

Test Plan for Assessment 3

Test Considerations
Introduction
Testing is a critical part of any software release. This Test Plan document details any
testing we have done for this assessment, whether functional or nonfunctional.
Generally we have used unit tests on new classes, class extensions and their
methods, and black-box testing on the game as a whole and other specifically
designed tests where relevant. As we have used a form of test-driven AGILE
Development, we have tested all relevant places throughout the implementation,
and we have ensured that each stage of the project is fully working as intended at
the end of each of our sprints.

Test Coverage
Clearly the original parts of the project have been well tested in the previous
assessment by Team HEC as detailed by their testing document. Any requirements
that have passed their tests will be assumed as working at the start of this
assessment. To utilise time as efficiently as possible we will therefore not re-test
any of these requirements, unless we are modifying the classes or methods that are
specifically fulfilling these requirements.

All Classes will be thoroughly tested using both Unit Tests and black box testing to
ensure that they are functioning correctly and robustly.

Accessors and mutators will be given a low precedence in testing are unlikely to
harbour any serious bugs that will affect critical system functionality.

Third-party libraries and in-built Java functionality will assumed effectively stable
and therefore will not be tested. We have deliberately chosen third-party libraries
that are very widely used in the hope that they will have very few bugs, and none
that are critical to system functionality.

Testing Environments

1 of 37

http://callumhewitt.github.io/LocomotionCommotion/Testing.pdf

Java is a flexible programming language and can be run on a very wide range of
systems. One of our project requirements is that the project runs on the computers
in the Department Labs, therefore all whole system tests- such as black-box testing
on the whole project will be run on these to ensure correct/expected functionality
when run on these computers

Other testing, such as unit testing, that examines source code may be run on other
systems, as the core reason for these tests is to ensure the correct code at low-level
rather than functionality of the system as a whole.

Testing Methods
We have used a wide variety of tests and testing methods within our software
testing to ensure our game is free from errors. These testing methods have
included:

Unit Testing
We isolated the whole program into separate testable units to see if they were fit for
use and whether they corresponded to the design specifications. We built test
classes using JUnit which instantiated the objects with specific input data and called
all relevant methods belonging to the unit class and tested their outputs against
expected outputs using JUnit assertions. We have decided to make use of JUnit due
to it’s wide use in testing applications, it allows us to make many assertions about
the functionality of a class and check to ensure that the assertions remain true. By
verifying that the output of each method corresponded to the expected value
(through the use of assertions), we were able to show that our class units worked as
intended. These tests were run near the end of this development cycle to ensure
that the code was all working in its finished state.
To run the JUnit tests, the author of each section of code wrote tests and ran them
using eclipse's built in JUnit functionality as it gave useful feedback about not only
which tests failed but also why they failed

Black Box Testing
Brief example of how black box testing has been used- forming a range of test
cases, testing them and the results.

System Testing
We will use system testing to test the system works as a whole. This performed by
the developers playing the game, they will press all buttons and ensure that

2 of 37

everything works as intended and the system is robust enough to handle
unexpected button clicks and events.

Usability Testing
We put the game in front of a completely new user with the game manual to test if
they could easily understand it. We set some initial test instructions for the user and
some test conditions to decide how we would measure if the test was passed.

Acceptance Testing
Due to time constraints in this very short assessment run, we haven’t been able to
run any acceptance testing for the project as yet. This is not a major issue as we do
not yet have a final product anyway.

3 of 37

Test Design & Results

Unit Tests for CargoGoal Class

A brief test class is written using JUnit that instantiates a Special Cargo Goal and
calls several of its methods and the expected outputs were matched against real
time outputs. All relevant methods and instance data members associated with
CargoGoal Class have been tested via JUnit so coverage is extensive.

The Methods & Data members of the CargoGoal class that we tested are –

● boolean specialcargo
● String getCargo()
● String getSStation()
● String getFStation()
● void assignTrain() & Train getTrain()
● int getReward()
● void goalComplete()

Note: We found an error/bug where the train’s speedmod won’t reset to the original
value after Special Cargo Goal Completion and fixed it.

Test Description Expected
Result

Result Proof of Result Status

Instantiate
Special Cargo
Goal and test the
value of
‘specialcargo’

Special Cargo
Goal is
successfully
instantiated and
‘specialcargo’ is
set to true to
confirm it

Special Cargo
Goal is
successfully
instantiated and
‘specialcargo’ is
set to true to
confirm it

The absence of
errors on building
and the assertion
‘specialcargo’
being true via
JUnit test
[testSpecialCargo
Goal()]

Pass

Get the cargo
type for Special
Cargo Goal

A string
‘Diamonds’ is
returned

A string
‘Diamonds’ is
returned

Assertion of the
string ‘Diamonds’
via JUnit test
[testCargo()]

Pass

Check if the
Special Cargo
Goal has a start
station

True True Assertion via
Junit test
[testGoalStations(
)]

Pass

4 of 37

Check if the
Special Cargo
Goal has a finish
station

True True Assertion via
JUnit test
[testGoalStations(
)]

Pass

Get the reward
for the Special
Cargo Goal

An integer
greater than
zero

An integer
greater than
zero

Assertion of a
reward being
returned which
greater than zero
(via Junit test)

Pass

Check if the
CargoGoal has
successfully
been assigned to
a player’s train

The selected
train should be
assigned to the
goal and there is
a decrease in
the SpeedMod
of the assigned
train

The selected
train should be
assigned to the
goal and there is
a decrease in the
SpeedMod of
the assigned
train

Assertion via
Junit test
[testAssignTrain()]
, the ability to call
getTrain() method
of the goal and
the decreased
speedmod value,
as shown in Fig 1

Pass

Check if a
special cargo
goal can
successfully be
completed

Execution of
method
goalComplete()
should be
successful

Execution of
method
goalComplete()
should be
successful

The absence of
errors on calling
the method and
assertion via
JUnit test
[testTrainSpeedM
odAfterGoal()]

Pass

Check if the
speedMod of the
player’s train is
restored back
after cargo goal
completion

SpeedMod is
back to original
value

SpeedMod is
back to original
value

Assertion via
JUnit test
[testTrainSpeedM
odAfterGoal()]

Pass

5 of 37

(Fig 1 - Running of JUnit Tests for CargoGoalTest class and some outputs)

6 of 37

Unit Test for GoalFactory Class

To ensure that the extended methods in Goal Factory class worked as intended, the
JUnit test class for Goal Factory Class was extended and the extended methods
were called with test data, and the outputs were verified via JUnit.

A series of 500 random goals were created via iteration in the JUnit test class and
the following extended functionalities were tested.

Test Description Expected Result Result Proof of Result Status
Ability to create
one or more
non-special goals
(Func.Sys.2.2)
(Func.Sys.2.3)

One or more
non-special
goals are created
by the
GoalFactory

One or more
non-special goals
are created by
the GoalFactory

Assertion via
JUnit test
[testCreateRan
domGoal()]

Pass

Ability to create
one or more
Special goals
(Func.Sys.2.2)
(Func.Sys.2.3)

One or more
non-special
goals are created
by the
GoalFactory

One or more
Special goals are
created by the
GoalFactory

Assertion via
JUnit test
[testCreateRan
domGoal()]

Pass

Ability to create
one or more
Special
CargoGoals
(Func.Sys.2.2)
(Func.Sys.2.3)

One or more
non-special
goals are created
by the
GoalFactory

One or more
Special Cargo
Goals are created
by the
GoalFactory

Assertion via
JUnit test
[testCreateRan
domGoal()]

Pass

Ability to create
one or more
Route based
goals
(Func.Sys.2.2)
(Func.Sys.2.3)

One or more
Route based
goals are created
by the
GoalFactory

One or more
Route based
goals are created
by the
GoalFactory

Assertion via
JUnit test
[testCreateRan
domGoal()]

Pass

Ability to create
one or more
Timed based
goals
(Func.Sys.2.2)
(Func.Sys.2.3)

One or more
Timed based
goals are created
by the
GoalFactory

One or more
Timed based
goals are created
by the
GoalFactory

Assertion via
JUnit test
[testCreateRan
domGoal()]

Pass

Ability to create
one or more

One or more
Special Combo
goals are created

One or more
Special Combo
goals are created

Assertion via
JUnit test

Pass

7 of 37

Special Combo
goals
(Func.Sys.2.2)

by the
GoalFactory

by the
GoalFactory

[testCreateRan
domGoal()]

Test each goal to
ensure a station
isn’t included that
is currently
unfixable (making
the goal
impossible to
complete)
(User.GP.2.5)
(Func.Sys.2.1)
(Func.Sys.2.2)
(Func.Sys.2.3)

No goals are
created with an
unfixable station
as either the
start, via, or final
stations.

No goals were
created with an
unfixable station
as either the start,
via, or final
stations.

Assertion via
JUnit test
[testCreateRan
domGoal()]

Pass

Note : All the above tests have been performed before ‘score’ class was added to
the game design

8 of 37

(Fig 2 - Running of JUnit Tests for GoalFactoryTest class)

9 of 37

Unit Tests for TimedGoal Class

A small test class was written for the new TimedGoal class, that generates an instance of
TimedGoal and tests each of its methods to ensure that they are operating as intended.
All new methods relevant to TimedGoal were tested and their outputs were asserted
using expected outputs through JUnit. All of the methods tested in the original GoalTest
class were also implemented to extensive testing has been upheld for this class.

The Methods and Attributes of the Timed class that we tested are –

● Station sStation

● Station fStation

● Train train

● int reward

● boolean isSpecial

● int turnLimit

● int startTurn

● Station getSStation()

● Station getFStation()

● Train getTrain()

● int getReward()

● boolean isSpecial()

● int getTurnLimit()

● int getStartTurn()

Test Description Expected Result Result Proof of Result Statu
s

Generates an
instance of
TimedGoal and
test the value of
isSpecial

isSpecial returns
true

isSpecial
returned true

The absence of
errors upon
instantiating
TimedGoal and
the assertion via
JUnit

Pass

10 of 37

[testIsSpecial()]

Test the value of
sStation

compareStations
returns true

compareStations
returned true

Assertion via
JUnit
[testGoalStations()]

Pass

Test the value of
fStation

compareStations
returns true

compareStations
returned true

Assertion via
JUnit
[testGoalStations()]

Pass

Test the value of
train

Train is correctly
assigned to
TimedGoal

Train was
correctly
assigned to
TimedGoal

Assertion via
JUnit
[testAssignTrain()

Pass

Test the value of
reward

reward should be
greater than 0

reward was
greater than 0

Assertion via
JUnit
[testgetReward()]

Pass

Test the value of
turnLimit

turnLimit should
be greater than 0

turnLimit was
greater than 0

Assertion via
JUnit
[testTurnLimit()]

Pass

Test the value of
startTurn

startTurn should
be greater than or
equal to 0

startTurn was
greater than or
equal to 0

Assertion via
JUnit
[testStartTurn()]

Pass

Note: After this test startTurn was changed to be 0 at the goal’s creation and later
changed to reflect the current turn counter once a train was assigned to it, at all points the
startTurn is greater than or equal to 0.

11 of 37

Unit Tests for RouteGoalClass

A small test class was written for the new RouteGoal class, that generates an instance of
RouteGoal and tests each of its methods to ensure that they are operating as intended. All
new methods relevant to RouteGoal were tested and their outputs were asserted using
expected outputs through JUnit. All of the methods tested in the original GoalTest class
were also implemented to extensive testing has been upheld for this class.

The Methods and Attributes of the Timed class that we tested are –

● Station sStation
● Station viaStation
● Station fStation
● Train train
● int reward
● boolean isSpecial
● Station getSStation()
● Station getViaStation()
● Station getFStation()
● Train getTrain()
● int getReward()
● boolean isSpecial()

Test Description Expected Result Result Proof of Result Status
Generates an
instance of
RouteGoal and
test the value of
isSpecial

isSpecial returns
true

isSpecial
returned true

The absence of errors
upon instantiating
TimedGoal and the
assertion via JUnit
[testIsSpecial()]

Pass

Test the value of
sStation

compareStations
returns true

compareStations
returned true

Assertion via JUnit
[testGoalStations()]

Pass

Test the value of
viaStation

compareStations
returns true

compareStations
returned true

Assertion via JUnit
[testGoalStations()]

Pass

Test the value of
fStation

compareStations
returns true

compareStations
returned true

Assertion via JUnit
[testGoalStations()]

Pass

Test the value of
train

Train is correctly
assigned to
TimedGoal

Train was
correctly
assigned to
TimedGoal

Assertion via JUnit
[testAssignTrain()

Pass

12 of 37

Test the value of
reward

reward should be
greater than 0

reward was
greater than 0

Assertion via JUnit
[testgetReward()]

Pass

13 of 37

Unit Tests for ComboGoal Class

A small test class was written for the new ComboGoal class, that generates an instance of
ComboGoal and tests each of its methods to ensure that they are operating as intended.
All new methods relevant to ComboGoal were tested and their outputs were asserted
using expected outputs through JUnit. All of the methods tested in the original GoalTest
class were also implemented to extensive testing has been upheld for this class.

The Methods and Attributes of the Timed class that we tested are –

● Station sStation
● Station viaStation
● Station fStation
● Train train
● int reward
● boolean isSpecial
● int turnLimit
● int startTurn
● Station getSStation()
● Station getViaStation()
● Station getFStation()
● Train getTrain()
● int getReward()
● boolean isSpecial()
● int getTurnLimit()
● int getStartTurn()

Test Description Expected Result Result Proof of Result Status
Generates an
instance of
RouteGoal and
test the value of
isSpecial

isSpecial returns
true

isSpecial
returned true

The absence of
errors upon
instantiating
TimedGoal and
the assertion via
JUnit
[testIsSpecial()]

Pass

Test the value of
sStation

compareStations
returns true

compareStations
returned true

Assertion via
JUnit
[testGoalStations()]

Pass

Test the value of
viaStation

compareStations
returns true

compareStations
returned true

Assertion via
JUnit
[testGoalStations()]

Pass

14 of 37

Test the value of
fStation

compareStations
returns true

compareStations
returned true

Assertion via
JUnit
[testGoalStations()]

Pass

Test the value of
train

Train is correctly
assigned to
TimedGoal

Train was
correctly
assigned to
TimedGoal

Assertion via
JUnit
[testAssignTrain()

Pass

Test the value of
reward

reward should
be greater than
0

reward was
greater than 0

Assertion via
JUnit
[testgetReward()]

Pass

Test the value of
turnLimit

turnLimit should
be greater than
0

turnLimit was
greater than 0

Assertion via
JUnit
[testTurnLimit()]

Pass

Test the value of
startTurn

startTurn should
be greater than
or equal to 0

startTurn was
greater than or
equal to 0

Assertion via
JUnit
[testStartTurn()]

Pass

Note: After this test startTurn was changed to be 0 at the goal’s creation and later
changed to reflect the current turn counter once a train was assigned to it, at all points the
startTurn is greater than or equal to 0.

15 of 37

Black Box Testing (Goal Extensions)

Test Description Expected Result Result Proof of Result Status
For Special Cargo
Goals, Cargo should
be set to Diamonds
and a player should
be able to choose
such a goal

‘Diamonds’ is
displayed on the
card for Special
Cargo Goal and a
player is able to
add that goal to his
list of goals

‘Diamonds’ is
displayed on the
card for Special
Cargo Goal and a
player is able to
add that goal to his
list of goals

As shown in Fig. 1,
‘Diamonds’ is
displayed on the
Special Cargo Goal
and it has been
added to player’s
list of chosen goals

Pass

For Special route
based goals, a
via/route station
should be specified
and a player should
be able to choose
such a goal

A route station is
specified for
Special route
based goal and a
player is able to
add that goal to his
list of goals

A route station is
specified for
Special route
based goal and a
player is able to
add that goal to his
list of goals

As shown in Fig. 1,
a route/via station
‘Madrid’ is
displayed on the
Route Based Goal
and it has been
added to player’s
list of chosen goals

Pass

For Special Timed
based goals,
a turn limit should be
specified and a player
should be able to
choose such a goal

A turn limit is
specified for
Special Time
based goal and a
player is able to
add that goal to his
list of goals

A turn limit is
specified for
Special Time
based goal and a
player is able to
add that goal to his
list of goals

As shown in Fig. 2,
a Turn Limit of ‘3’
is displayed on a
Special Route Goal
and it has been
added to player’s
list of chosen goals

Pass

For Special Combo
Goals, a turn limit and
a route station should
be specified and a
player should be able
to choose such a goal

Both turn limit and
route station are
specified on the
the goal card and a
player is able to
add that goal to his
list of goals

Both turn limit and
route station are
specified on the
the goal card and a
player is able to
add that goal to his
list of goals

As shown in Fig. 2,
a Turn Limit of ‘12’
and a route station
‘Moscow’ are
displayed on the
Combo Goal and it
has been added to
player’s list of
chosen goals

Pass

Attempt to complete a
standard (non-special)
goal

(Func.SYS.2.4)

The non-special
goal is completed
and the player is
rewarded for the
completion of the
goal

The non-special
goal is completed
and the player is
rewarded for the
completion of the
goal

As shown in Fig 4,
the non-special
goal is completed
and the player is
rewarded and the
Goal Completion
message is
displayed.

Pass

Attempt to complete a
Special Cargo Goal
(Func.SYS.2.4)

The Special Cargo
Goal is completed
and the player is

The Special Cargo
Goal is completed
and the player is

There is no
screenshot of this
test due to it

Pass

16 of 37

rewarded for the
completion of the
goal

rewarded for the
completion of the
goal

displaying the
same message
and using the
same method as a
standard goal.

Attempt to complete a
Special Route based
goal
(Func.SYS.2.4)

The Special Route
Goal is completed
and the player is
rewarded for the
completion of the
goal

The Special Route
Goal is completed
and the player is
rewarded for the
completion of the
goal

There is no
screenshot of this
test due to it
displaying the
same message
and using the
same method as a
standard goal.

Pass

Attempt to complete a
Special timed goal
(Func.SYS.2.4)

The Special Timed
Goal is completed
and the player is
rewarded for the
completion of the
goal

The Special Timed
Goal is completed
and the player is
rewarded for the
completion of the
goal

There is no
screenshot of this
test due to it
displaying the
same message
and using the
same method as a
standard goal.

Pass

Attempt to complete a
Combo Goal
(Func.SYS.2.4)

The Special
Combo Goal is
completed and the
player is rewarded
for the completion
of the goal

The Special
Combo Goal is
completed and the
player is rewarded
for the completion
of the goal

There is no
screenshot of this
test due to it
displaying the
same message
and using the
same method as a
standard goal.

Pass

When a player fails to
complete a goal in
certain time limit after
assigning the goal to
his train, Goal Failed
Message should be
displayed.
(Func.SYS.2.4)

Goal Failed
Message is
displayed
whenever the turn
limit is exceeded
after assigning the
goal to a train

- On exceeding the
turn limit, Goal
Failed message is
displayed when a
train has been to
the start station,
otherwise it is not.
(Bug)

As shown in Fig. 3,
a message was
displayed to the
player about him
not being able to
complete the goal
in the required
time limit

Pass
(Fail if
train
hasn’t
been
to start
station
)

Note : All the above tests have been performed before ‘score’ class was added to the
game design

17 of 37

(Figure 1) (Figure 2)

18 of 37

(Figure 3 - Message displayed on failing a goal)

19 of 37

(Figure 4 - Message displayed on completing a goal successfully)

Unit testing for Shop
In order to ensure that the methods added to the Shop class, the shopTest was extended
to test the newly added buyTrain function. All acceptable inputs for the buyTrain method
were tested and their outcomes were asserted through expected outcomes in JUinit. The
methods originally implemented in the Shop were also tested to ensure extensive testing
has been upheld in this class.

Test Description Expected Result Result Proof of Result Status
The buyTrain
function is called
with “Coal” as the
parameter

[Func.SYS.4.9]

The player’s gold
is reduced by the
price of the train
and the train is
added to their list
of trains

The player’s gold
was reduced by
the cost of the
train and the train
was added to
their list of trains

The JUnit test for
the size of the
players list of trains
increasing by one
and their gold
reducing by the cost
of the train

Pass

The buyTrain
function is called
with “Oil” as the
parameter

[Func.SYS.4.9]

The player’s gold
is reduced by the
price of the train
and the train is
added to their list
of trains

The player’s gold
was reduced by
the cost of the
train and the train
was added to
their list of trains

The JUnit test for
the size of the
players list of trains
increasing by one
and their gold

Pass

20 of 37

reducing by the cost
of the train

The buyTrain
function is called
with “Electric” as
the parameter

[Func.SYS.4.9]

The player’s gold
is reduced by the
price of the train
and the train is
added to their list
of trains

The player’s gold
was reduced by
the cost of the
train and the train
was added to
their list of trains

The JUnit test for
the size of the
players list of trains
increasing by one
and their gold
reducing by the cost
of the train

Pass

The buyTrain
function is called
with “Nuclear” as
the parameter

[Func.SYS.4.9]

The player’s gold
is reduced by the
price of the train
and the train is
added to their list
of trains

The player’s gold
was reduced by
the cost of the
train and the train
was added to
their list of trains

The JUnit test for
the size of the
players list of trains
increasing by one
and their gold
reducing by the cost
of the train

Pass

The repairStation
function was
called on a test
station

The players gold
is decremented
by 300 and the
station is repaired

the players gold
was
decremented by
300 and the
station was
repaired

The JUnit test for
the station isFaulty
becoming true and
the players gold
reducing by 300

Pass

the repair station
function was
called on a test
station when the
player had no
gold

the station
remains faulty
and the players
gold remains the
same

the station
remained faulty
and the players
gold did not
change

the JUnit test for the
station isFaulty
remaining true and
the players gold not
changing

Pass

the upgrade
station function
was called on a
test station

The station level
increasing by one
and the players
gold reducing by
400

the station level
increased by 1
and the players
gold was
reduced by 400

the JUnit test for the
station level
increasing by one
the the player’s gold
reducing by 400

Pass

The upgrade
station function
was called on a
test station when
the player had no
gold

the station level
and the player’s
gold should both
remain
unchanged

the stations level
and the players
gold both
remained
unchanged

The JUnit test for
the players gold
remaining the same
and the station’s
level not changing

Pass

21 of 37

Unit test for TeleportCard

Originally the Teleportation WildCard did not function as intended, upon activation it
would teleport the player’s first train to a single pre-set station (London). This has now
been altered to teleport a random train (owned by the player) to a random station on the
map. A small extension was made to the original JUnit test class in order to ensure this
new functionality was implemented correctly and worked as intended. The test table
below only includes the extensions to the JUnit test as all original functionality and unit
testing will have been performed by the previous team.

Test Description Expected Result Result Proof of Result Status
Activating the
card moves a
random train
(owned by the
player) to a
random location.
(Func.SYS.4.8)

A random train is
moved to a
random station.

A random train
has moved to a
random station.

Assertion via JUnit
{testImplementCar
d()]

Pass

22 of 37

Black box testing for TeleportCard

Test Description Expected Result Result Proof of Result Status
Activating the
card moves a
random train
(owned by the
player) to a
random location.
(Func.SYS.4.8)

A random train is
moved to a
random station.

A random train
has moved to a
random station.

See before
activation and after
activation
screenshots below.
The Orange train
has moved from
London to Madrid.

Pass

23 of 37

24 of 37

Unit Testing for Faults
A short test class was written for testing faults within the game. Although the ‘Faults’
implementation spans several several classes, we have tested it as one system.

The Methods and Attributes of we have tested for Faults are-

● WorldMap Class
○ generateFaults()

● Station Class
○ isFaulty()
○ isRepairable()
○ makeFaulty()
○ fixFault()
○ getStationLevel()
○ upgradeStation()
○ getFaultRate()

The faults section of the project was intended to fulfil the following Requirements:

User.GP.6.3 : There MUST be at least two obstacles in the game.

The requirement User.UI.10 also refers to faults, however this is about the GUI which is to
be tested using a black box test, later in this document.

Test Description Expected Result Result Proof of Result Status
Station start
level is 0

Station initialises
at level 0

Station initialises
at level 0

Assertion via JUnit
passes

Pass

Station start fault
rate is 0.1.

Station fault rate
returns 0.1 when
at level 0.

Station fault rate
returns 0.1 when
at level 0.

Assertion via JUnit
passes

Pass

Station can be
upgraded

Station level
increases when
upgraded

Station level
increases when
upgraded

Assertion via JUnit
passes

Pass

Station fault rate
is lower at higher
levels

Station fault rate
decreases when
upgraded

Station fault rate
decreases when
upgraded

Assertion via JUnit
passes

Pass

Station is initially
not faulty.

Station isFaulty()
method returns
false.

Station isFaulty()
method returns
false.

Assertion via JUnit
passes

Pass

Station is initially
repairable.

Station
isRepairable()
method returns
true.

Station
isRepairable()
method returns
true.

Assertion via JUnit
passes

Pass

Station can be
made faulty

Station isFaulty()
returns true,

Station isFaulty()
returns true,

Assertion via JUnit
passes

Pass

25 of 37

when station is
broken.

when station is
broken.

Station can be
fixed if not
permanently
damaged

Station isFaulty()
returns false
again after
fixFault() is
called

Station isFaulty()
returns false
again after
fixFault() is
called

Assertion via JUnit
passes

Pass

26 of 37

27 of 37

Black box testing for Faults

The faults section of our extension to the HEC project newly fulfils the requirements:
Func.OD.4.2 Game SHOULD alert players when a random event occurs.

USER.GP.6.3 There MUST be at least two obstacles in the game.
USER.UI.10 MUST display hazards on screen.

Test/Scenario Expected Result Result Proof of Result Status
Run a game to see
faults appear at
random on the
map.

Faults will
randomly occur
throughout the
course of the
game.

As expected,
several faults
appear on the
map.

See the
screenshots below
this table.

Pass

Attempt to move
to a faulty station

The train cannot
move to that
station and is
returned to the
previous station.
A warning
message is fired.

The train cannot
move to that
station and is
returned to the
previous station.
A warning
message is fired.

See the
screenshots below
this table.

Pass

Attempt to leave a
faulty station

The train cannot
leave the station.
A warning
message is fired.

The train cannot
leave the station.
A warning
message is fired.

See the
screenshots below
this table.

Pass

Repair a station by
clicking the
“repair” button on
the station info
panel

The station is no
longer faulty and
the station icon
goes to the
standard one

The station is no
longer faulty and
the station icon
goes to the
standard one

As shown in the
screenshot below,
the station was
faulty and is then
repaired

Pass

Attempt to repair
a non-repairable
faulty station

Warning
message fires to
prompt user of
the illegal move

Warning
message fires to
prompt user of
the illegal move

See the
screenshots below
this table.

Pass

Test 1:

28 of 37

Test 2:

29 of 37

Test 3:

Test 4:

30 of 37

Test 5

31 of 37

Black box testing for Score

Most of the work in creating a score system was in pulling apart the “gold” and “points”

systems that was implemented when we received the project from the previous group.

The actual implementation of Score when finished is quite low level, with a mutator in

Player, a Score class extending Resource and a method in goal that adds score.

Func.SYS.1 : System must keep both players’ score

Func.SYS.8.1 : System must be able to add points to a players score

Func.Sys.8.2 : System must be able to assign points to a randomly generated

goals.

Func.Sys.4.1 : System must track of players resources in real time

It was decided that none of these components needed testing using JUnit, as any tests of

mutators etc are trivial. Black box testing however would show the successful awarding of

points to a player and their presence on screen.

The only time a player may receive points is when they complete a goal:

A goal from Berlin to Monaco was completed by player 1 with a reward of 390 gold and 3

Score.

32 of 37

Black box testing for ending the game

The ability to end the game and have the program close after declaring the winner was
implemented, this was a simple function in core game that the previous developers had
named but not implemented. This functionality was black box tested:

Func.Sys.3.5 : System must be able to declare an end to the game once the game end
condition has been reached.

Func.Sys.13: System must be able to terminate itself safely.

33 of 37

34 of 37

Usability Testing
Test Conditions

The test will be run on the standard lab setup in the department labs as one of our
requirements is for the system to work on these machines. Developers will not be present
in order to ensure that the participants are not given hints either deliberately or
inadvertently. All efforts will be made to ensure that the users are acting independently at
all times.

The participants will be picked by being anyone passing by in the corridor outside the
Software Laboratories in the Department of Computer Science, University of York.
However, we will ensure that none of the participants have played any version of
Locomotion Commotion before.

Method

1. Give a pair of new users the game manual to read.
2. Open the game for the users- we are testing usability of the game, not the users’

abilities to open an executable file.
3. Ask the users to complete each task specified in the table below.
4. After each task is complete, immediately ask the users to rate how easy it was to

understand and, where relevant, how challenging it was to complete.
5. Ease of understanding will be marked on a 5 point scale, where Very Easy (5) is our

optimum result
6. Level of Challenge will be marked on a 9 point scale where 1 is too easy, 5 is just

right and 9 is too hard. 5 is our optimum result again. The actual score for this will
be the difference between 5 and the result recorded.

7. If the marks for the tests average out as 3.5 out of 5 or higher, the test passes.

Participants
The participants were all aged 18-20, which, although it is a limited range, fits the
demographic of our expected audience for the game. There were 4 participants, of which
1 was female and 3 were male.

Results

Test/Scenario Expected Result (Proof of) Result Status

Start a game
(50 turn limit)

Will be measured
by Ease of
Understanding only
as this is not an
aspect of gameplay.
The score will be
3.5 or greater.

Scored an average
of 5.0 for Ease of
Understanding.

Pass.

35 of 37

Select a goal Will be measured
by Ease of
Understanding only
as this is not an
aspect of gameplay.
The score will be
3.5 or greater.

Scored an average
of 4.5 for Ease of
Understanding.

Pass.

Assign a goal to a
train

Will be measured
by Ease of
Understanding only
as this is not an
aspect of gameplay.
The score will be
3.5 or greater.

Scored an average
of 4.0 for Ease of
Understanding.

Pass.

Complete a goal Will be measured
on both scales.
These scores will
each be 3.5 or
greater.

Scored an average
of 4.5 for Ease of
Understanding and
4.0 for Level of
Challenge.

Pass.

Complete a further
two goals

Will be measured
on both scales.
These scores will
each be 3.5 or
greater.

Scored an average
of 4.5 for Ease of
Understanding and
3.5 for Level of
Challenge.

Pass.

Finish the game Will be measured
on both scales.
These scores will
each be 3.5 or
greater.

Scored an average
of 4.0 for Ease of
Understanding and
4.0 for Level of
Challenge.

Pass.

Additional Notes
The participants praised the comprehensiveness of the user manual as well as the
on-screen prompts.

The Level of Challenge became an average of 3.5 for Level of Challenge for completing a
total of three goals, this is a near miss. It was thought that the Level of Challenge was
slightly too hard, particularly for turn-limited goals. Some attention should be paid to this
in further development and further tests should be undertaken in the next phase.

36 of 37

Trivial Requirements :

We felt that some of the system requirements, that had been traced by HEC already in
the previous assessment didn’t need re-testing as the code hasn’t been modified. The
following are those requirements Func.Sys.2.3, Func.Sys.3.1, Func.Sys.3.2, Func.Sys.3.3,
Func.Sys.4.3, Func.Sys.4.5, Func.Sys.4.6,, Func.Sys.4.8, Func.Sys.4.9, Func.Sys.4.10,
Func.Sys.5.1, Func.Sys.6.1, Func.Sys.6.2, Func.Sys.6.3, Func.Sys.7.2, Func.Sys.10,
Func.Sys.11.4, Func.Sys.12.2, Func.Sys.15.

Some of the optional System Requirements were left out due to time constraints :

Func.Sys.2.5 : System should have special goals which provide Wildcards as reward

Func.Sys.4.5 : Stations Could randomly generate extra resources at the end of a turn.

37 of 37

