

Test Plan for Assessment 2

Test Considerations
Introduction
Testing is a critical part of any software release. This Test Plan document details any
testing we have done whether functional or nonfunctional. Generally have used unit
tests on critical high risk classes and their methods, black-box testing on the game
as a whole and other specifically designed tests where relevant. As we have used
AGILE Development, we have tested the relevant places at the end of each of our
sprints.

Test Coverage
System critical methods, particularly ones of where a large amount of computation
occurs will be tested thoroughly.

Third-party libraries and in-built Java functionality will assumed effectively stable
and therefore will not be tested. We have deliberately chosen third-party libraries
that are very widely used in the hope that they will have very few bugs, and none
that are critical to system functionality.

Basic methods, i.e. accessors/mutators and those which simply return a value, will
be given a low precedence in testing, this is because they are simple to understand
straight from the source code and are therefore unlikely to harbour any serious bugs
that will affect critical system functionality.

Testing Environments
Java is a flexible programming language and can be run on a very wide range of
systems. One of our project requirements is that the project runs on the computers
in the Department Labs, therefore all whole system tests- such as black-box testing
on the whole project will be run on these to ensure correct/expected functionality
when run on these computers

Other testing, such as unit testing, that examines source code may be run on other
systems, as the core reason for these tests is to ensure the correct code at low-level
rather than functionality of the system as a whole.

1 of 28

Testing Methods
We have used a wide variety of tests and testing methods within our software
testing to ensure our game is free from errors. These testing methods have
included:

Unit Testing
We isolated the whole program into separate testable units to see if they were fit for
use and whether they corresponded to the design specifications. We built test
classes which instantiated the objects with specific input data and called the various
methods belonging to the unit class and printed the outputs. By verifying that the
output of each method corresponded to the expected value, we were able to prove
that our class units worked as intended.

Black Box Testing
Brief example of how black box testing has been used- forming a range of test
cases, testing them and the results.

System Testing
We will use system testing to test the system works as a whole. This will be
measured against the start

Usability Testing
We put the game in front of a completely new user with the game manual to test if
they could easily understand it. We set some initial test instructions for the user and
some test conditions to decide how we would measure if the test was passed.

Acceptance Testing
We haven’t run any acceptance testing for the project as yet, this is because the
project implementation is still only in it’s early stages, and we’d like to have more of
the features from the brief before testing with the client.

2 of 28

Test Design
Test 1: Unit Test for Train Class
Test Conditions
The test shall be run on a laptop running windows 7. The unit test will be run on
eclipse with a custom written test class.

Method
A test class will be written that instantiates an instance of a train at junction 0, moves
it to junction 37, upgrades the train, breaks the train, and repairs the train. In between
each of these actions it outputs the results of these changes.

Test

Test Expected Result

Engine types remain throughout trains
life

Remain constant despite game
progression

New train can be created Train is instantiated at junction

Upgrade a train’s tier Train tier changed from 1 to 2

3 of 28

Test 2: Black Box Test for Train Class
Test Conditions
The game will be run from the executable .jar file on a standard department lab PC
running Windows 7.

Method
The game as a whole will be run, and we will test to see that the player’s train is
instantiated and displayed by the GUI.

Test

Test Expected Result

Train is instantiated by the Game Engine
when game starts.

Train appears on map at starting station.

4 of 28

Test 3: Unit Test for Player Class
Test Conditions
The test will be run on a laptop running Windows 7, in Eclipse with JDK 7.

Method
A brief test class is written that instantiates 2 players and calls several of its
methods.

The Methods of the Player class that will be tested by our test class are –

● Player(int playerID, int homeStationID) //CONSTRUCTOR
● getPlayerScore()
● increasePlayerScore(int numPoints)
● getPlayerWealth()
● increasePlayerWealth(int numWealth)
● getPlayerTrains()
● buyNewTrain(int cost, int engineType, int ownerID, int trainID, int faultRate)

Test

Test Expected Result

Instantiate 2 players 2 Players are instantiated

Get a player’s current score An integer representing a player’s score
(0 on instantiation)

Get a player’s current wealth An integer representing a player’s
wealth (0 on instantiation)

Increase a Player’s score (for instance,
by 2000)

The method is successfully executed
and shows the desired increase
(increase in score is tested by executing
getPlayerScore method)

Increase a Player’s wealth (for instance,
by 2000)

The method is successfully executed
and shows the desired increase
(increase in wealth is tested by
executing getPlayerScore method)

Buy a new train of cost less than player’s
wealth

The method is successfully executed and
shows the desired changes. (Train is
successfully added to player’s trainlist

5 of 28

and a consequent decrease in player’s
wealth is reflected)

Get a player’s current list of trains A list representing the player’s list of
train objects

Buy a train with cost more than a
player’s wealth

An error message should be displayed
an no train should be added to player’s
train list and his wealth should remain
the same

6 of 28

Test 4: Black Box Test for Player Class
Test Conditions
The game will be run from the executable .jar file on a standard department lab PC
running Windows 7.

Method
The game as a whole will be run and we will test for the player’s score and wealth at
the start of the game and the player’s score and wealth after the completion of a
goal. This also shows that the GoalEngine class can recognise completed goals.

Test

Test Expected Result

A Player should not have any wealth or
any score at the start of the game.

The wealth and score tabs of the Player
info section is both be set to 0 when the
players are initialized.

Player’s wealth and score should
increase after completion of a goal

The wealth and score awarded by the
goal is added to the player’s wealth and
score

7 of 28

Test 5: Black Box Test for MapGraph
Test Conditions
The test will be run on a laptop running Ubuntu 14.04 using the executable .jar file.

Method
To ensure that the methods in MapGraph work as intended, we have written a brief
test class that instantiates an instance of MapGraph and calls several of it’s methods
with some test data, and prints the outputs.

The methods that will be tested by our test class are as follows:

● MapGraph.CreateMapArray() (tested through correct instantiation of the class)
● MapGraph.GetJunctionList(String file) (tested through correct instantiation of

the class)
● MapGraph.AddTrain(int trainID, int location)
● MapGraph.MoveTrain(int trainID, int location, int destination)
● Junction.GetConnectedJunctions()
● Junction.GetTrains()
● Junction.IsPresent(Integer TrainID)
● Junction.FindNext(int destination)

Test

Test Expected Result

Instantiate MapGraph MapGraph object is successfully
instantiated

Add train (ID 0) to junction (ID 0) on map Train successfully added to junction

Get the next stop from junction 0 with a
destination of juncton 1

The ID 37 should be returned

Get all connected junctions and stations
from junction 0

The IDs 1 and 2 should be returned

Get list of trains at junction 0 The ID 0 should be returned

Move train from junction 0 towards
junction 1

Train moved from junction 0 to junction
37 (towards junction 1)

Remove train (ID 0) from junction (ID 37)
on map

Train 0 successfully removed from
junction 37

8 of 28

Test 6: Black Box Test for GoalEngine
Test Conditions
The test will be run on a laptop running Ubuntu 14.04 using the executable .jar file.

Method
The game will be played as a whole and we will test for the goals being displayed
properly upon the game opening. We will also test for the removal of a goal at the
end of a turn, and it’s subsequent replacement. If each goal is replaced after it is
removed, then the game will always have 3 active goals.

Test

Test Expected Result

Goal replacement after a removal New goal is generated at the end of a
turn to replace an existing one. New
goal is also generated after one is
completed

Goal descriptions are displayed
correctly

Goal descriptions are displayed in the
format:
“Goal _num_: Get to _Station_ for $_num_
and _num_ exp.”

9 of 28

Test 7: Black Box Test for Train Movement
Test Conditions
The game will be run from the executable .jar file on a standard department lab PC
running Windows 7.

Method
We will run the game as a whole and we will test that the train movement works as
intended, this will be achieved by attempting to move the train via a variety of valid
and invalid methods and ensuring that the game deals with them in the intended
way.

Test

Test Expected Result

Attempt to move train further than it
can move in one turn (Currently 2
spaces)

Train moves along track as far as it is
capable and stops

Attempt to move train to a station closer
than it’s maximum movement
allowance (Currently 2 spaces)

Train moves to the destination and
stops without using up the rest of it’s
allowance

Attempt to move train without selecting
a train

Prompt appears asking the player to
select a train to move

Attempt to move train without selecting
a destination

Prompt appears asking the player to
select a destination

Attempt to move a train to a destination
that passes a junction or station

Prompt appears informing the player
that an invalid move was attempted

Attempt to move a train to a checkpoint Prompt appears informing the player
that an invalid move was attempted

10 of 28

Test 8: System Testing for Whole Game
Test Conditions
The test will be run on the standard lab setup in the department labs as one of our
requirements is for the system to work on these machines. The machines will be
booted into Windows 7 and the game run from the executable file.

Method
The game will be run as a whole from the executable .jar file, we will test that
stations and junctions turn blue to indicate that they have been selected. We will
then test the selection of checkpoints to ensure that they cannot be selected as
destinations. Trains will be selected to ensure that a black border is added to them,
we will ensure that the train’s icon is moved upon the train itself being moved.

Test

Test Expected Result

The GUI is expected to display an
image of the map, with junctions, goals,
and player information all displayed in
their initial state.

The GUI will display an image of the
map, with junctions, goals, and player
information all displayed in their initial
state.

Stations and junctions should be
selectable.

Stations and junctions should turn blue
when they are clicked on, to represent
them being selected.

Checkpoints (junctions which have only
two connected points) should not be
selectable.

Checkpoints should not change colour
when they are clicked on.

Trains should be selectable. Trains will gain a black border upon
being clicked to represent being
selected.

When given a valid move for a train, the
GUI should move the train icon.

Train icon moves.

11 of 28

Test 9: Usability Testing for the Whole System
Test Conditions
The test will be run on the standard lab setup in the department labs as one of our
requirements is for the system to work on these machines. Developers will not be
present in order to ensure that the participants are not given hints either deliberately
or inadvertently. All efforts will be made to ensure that the users are acting
independently at all times.

Method

1. Give a pair of new users the game manual to read.
2. Open the game for the users- we are testing usability of the game, not the

users’ abilities to open an executable file.
3. Ask the users to race to complete a goal.
4. Tell users they may ask for help if needed.
5. Once a goal has been completed, ask the users to answer a few simple

questions to suggest what difficulties they came across.

Test

Test Expected Result

Users manage to move a train by
reading the game manual. The test is
passed if no external help is required.

No external help is required.

Users manage to swap places at the
end of player 1’s turn. The test is passed
if no external help is required.

No external help is required.

One user manages to complete a goal.
The test is passed if no external help is
required.

No external help is required.

12 of 28

Test Results
Test 1: Unit Test for Train Class
Results

Test Result Proof of Result

Engine types remain
throughout trains life

Values remained correct
and valid

See Fig. 1
Using constants ensures
validity of such values

New train can be created Train was instantiated at
the correct junction

See Fig. 2 - 3

Upgrade a train’s tier Train tier changed from 1
to 2

See Fig. 2 - 3

Screenshot Proofs

Fig. 1

Fig. 2

13 of 28

Fig. 3

14 of 28

Test 2: Black Box Test for Train Class
Results

Test Result Proof of Result

Train is instantiated when
game starts

Train appeared on map at
correct station.

See Fig. 4

Screenshot Proofs

Fig. 4: Train is visible on Kiev Station.

15 of 28

Test 3: Unit Test for Player Class
Results

Test Result Proof of Result

Instantiate 2 players 2 Players are instantiated The absence of errors on
building and the ability to
call the method
getPlayerScore of the
two player objects
indicates that the both
objects were instantiated
correctly
See (Fig. 5)

Get a player’s current
score

An integer representing a
player’s score (0 on
instantiation)

As shown in (Fig. 5), a
player’s score is an
integer (on instantiation it
is 0)

Get a player’s current
wealth

An integer representing a
player’s wealth (0 on
instantiation)

As shown in (Fig. 5), a
player’s wealth is an
integer (on instantiation it
is 0)

Increase a Player’s score
(for instance, by 2000)

The method is
successfully executed
and shows the desired
increase (increase in
score is tested by
executing getPlayerScore
method)

As shown in (Fig. 5), the

Increase a Player’s wealth
(for instance, by 2000)

The method is
successfully executed
and shows the desired
increase (increase in
wealth is tested by
executing getPlayerScore
method)

As shown in (Fig. 5), the
increased wealth is 2000

Buy a new train of cost
less than player’s wealth

The method is
successfully executed
and shows the desired
changes. (Train is
successfully added to

As shown in (Fig. 5),
Player 1 bought 3 trains of
cost 1000,500 and 250
and the trains are added

16 of 28

player’s trainlist and a
consequent decrease in
player’s wealth is
reflected)

to his Trainlist and his
resulting wealth is 250.

Get a player’s current list
of trains

A list representing the
player’s list of train
objects

As shown in (Fig. 5), the
player’s list contains 3
trains that were bought
by him

Buy a train with cost more
than a player’s wealth

An error message should
be displayed an no train
should be added to
player’s train list and his
wealth should remain the
same

As shown in (Fig. 5 & 6), a
message “You don't have
enough money to buy
this train!” was displayed
and player’s current
trainlist and wealth
remained the same

Screenshot Proofs

Fig. 5 - Output from Unit Test

17 of 28

Fig. 6 - Error message from buying a train without required wealth.

Fig. 7 - The Unit Test File for this test

18 of 28

Test 4: Black Box Test for Player Class
Results

Test Result Proof of Result

A Player should not have
any wealth or any score
at the start of the game.

The wealth and score
tabs of the Player info
section are both be set to
0 when the players are
initialized.

As shown in Fig. 1 and 2,
wealth and money are set
to 0 at start of the game.

Player’s wealth and score
should increase after
completion of a goal

The wealth and score
awarded by the goal is
added to the player’s
wealth and score

As shown in Fig. 3 & Fig. 4,
Player 2 completed the
goal of taking his train to
Madrid and the desired
increase in his wealth and
score is reflected.

Screenshot Proofs

 Fig. 8 Fig. 9

 Fig. 10 Fig. 11

19 of 28

Test 5: Unit Test for MapGraph
Results

Test Result Proof of Result

Instantiate MapGraph MapGraph object is
successfully instantiated

The absence of errors on
building and executing,
and the ability to call
methods from the
instantiated method
indicated that the object
was instantiated correctly

Add train (ID 0) to junction
(ID 0) on map

Train was successfully
added to junction

The output of
junction.GetTrains()
indicates that the train
was added correctly

Get the next stop from
junction 0 with a
destination of juncton 1

The ID 37 was returned See output of test class

Get all connected
junctions and stations
from junction 0

The IDs 1 and 2 were
returned

See output of test class

Get list of trains at
junction 0

The ID 0 was returned See output of test class

Move train from junction
0 towards junction 1

The train was moved
successfully from
junction 0 to junction 37

The output of the second
junction.GetTrains()
indicates that the train
was moved out of
junction 0, and the output
of the third
junction.GetTrains()
indicates that the train
was moved to junction 37

Remove train (ID 0) from
junction (ID 37) on map

The train 0 was
successfully removed
from junction 37

The output of
junction.IsPresent(0)
indicates that the train
was removed correctly

20 of 28

Screenshot Proofs

Fig. 12

Fig. 13

21 of 28

Test 6: Black Box Test for GoalEngine
Result

Test Result Proof of Result

Goal replacement after a
removal

New goal is generated at
the end of a turn to
replace the existing one.
A new goal is also
generated after one is
completed

See Fig. 14 & 15 for before
replacement and after
replacement respectively

Goal descriptions are
displayed correctly

Goal descriptions are
displayed in the format:
“Goal _num_: Get to
Station for $_num_ and
num exp.”

See Fig. 14 for goal
descriptions being
displayed

Screenshot Proofs

Fig. 14 Fig. 15

22 of 28

Test 7: Black Box Test for Train Movement
Result

Test Result Proof of Result

Attempt to move train
further than it can move
in one turn (Currently 2
spaces)

Train only moves along
the path as far as it is
capable

See:
Fig. 1&2, before move and
after move respectively

Attempt to move train to
a station closer than it’s
maximum movement
allowance (Currently 2
spaces)

Train only moves to the
destination and stops
without using up the rest
of it’s allowance

See:
Fig. 3&4, before move and
after move respectively

Attempt to move train
without selecting a train

Prompt appears asking
the player to select a train
to move

See:
Fig. 5&6, before attempt
and after attempt
respectively

Attempt to move train
without selecting a
destination

Prompt appears
informing the player that
an invalid move was
attempted

See:
Fig. 7&8, before attempt
and after attempt
respectively

Attempt to move a train
to a destination that
passes a junction or
station

Prompt appears
informing the player that
an invalid move was
attempted

See:
Fig. 9&10, before attempt
and after attempt
respectively

Attempt to move a train
to a checkpoint

Prompt appears
informing the player that
an invalid move was
attempted

See:
Fig. 10&11, before attempt
and after attempt
respectively

23 of 28

Screenshot Proofs

Fig. 16 Fig. 17

Fig. 18 Fig. 19

Fig. 20 Fig. 21

24 of 28

Fig. 22 Fig. 23

Fig. 24 Fig. 25

Fig. 26 Fig. 27

25 of 28

Test 8: System Testing for Whole Game
Results

Test Result Proof

The GUI is expected to
display an image of the
map, with junctions, goals,
and player information all
displayed in their initial
state.

The test matches the
intended appearance of
the map from our testing
predictions. Working as
intended.

See Fig. 28

Stations and junctions
should be selectable.

Stations and junctions
both turned blue when
clicked. Working as
intended.

See Fig. 29 & 30

Checkpoints (junctions
which have only two
connected points) should
not be selectable.

The checkpoint was
selectable and turned
blue when clicked.

See Fig. 31

Trains should be
selectable.

The train gained a black
border around when it
was clicked. Working as
intended.

See Fig. 32

When given a valid move
for a train, the GUI should
move the train icon.

The train moves on the
screen.

See Fig .32 & 33

Screenshot Proofs

 Fig. 28 Fig. 29

26 of 28

Fig. 30 Fig. 31

Fig. 32 Fig. 33

Bug Fixes
Due to the implementation of the Checkpoints in the GUI, it was excessively
complex to remove the event listeners from them without affecting the other
Junctions. We have instead opted to include a check within the GameEngine class
to prevent Checkpoints from being used as destinations, a prompt appears to the
player informing them of an invalid move when a Checkpoint is attempted to be
used as a destination.

27 of 28

Test 9: Usability Testing for the Whole System
Results

Test Result Proof of Result

Users manage to move a
train by reading the game
manual. The test is
passed if no external help
is required.

Pass. No external help was
required.

Users manage to swap
places at the end of
player 1’s turn. The test is
passed if no external help
is required.

Pass. No external help was
required.

One user manages to
complete a goal. The test
is passed if no external
help is required.

Pass. No external help was
required.

Notes
Participants asked whether they are meant to play the game together. It was
clarified to them that they were meant to play against each other. As this was a
question about the test rather than the game, it was not deemed that this was a
significant enough query to cause the failure of the test.

Additional Comments from Participants
Rules seem more complicated than actually doing it- perhaps the user manual is
slightly too formal.

Summary at the bottom of the user manual?

Goals change perhaps too quickly!

Buttons in the bottom are easy to use, but perhaps difficult to find without the user
manual.

28 of 28

