B L s
v Ui

Software Engineering Project

Assessment 1

Project Document

Introduction

We are going to make a two player, turn-based game. The game will be competitive and
focused around train management within a given area. The players must be able to direct
their trains in order to try and complete objectives given to them by the game before the other
player whilst also avoiding any obstacles on the map. The map will be modelled on a futuristic
version of Europe to give the player a sense of familiarity whilst also leaving room for any
creative changes that need to be made.

This document details the user and system requirements, how the system requirements fulfil
the user requirements and how the system will fulfill them. This document also contains our
development plan, including our predicted time management for the entire project to ensure
that the product will be delivered to the customer on time. Also, we included a team
management plan so that the team can carry on with this project if something goes wrong.

Requirements & Specification

Assumptions

In order to greatly simplify the requirements and specification of the project, we have made a
small number of assumptions about the players and the platform the game will run on. We
have made the assumption that the players are all English speakers, and can operate a
mouse and keyboard in order to interact with the game. The platform that the game will be
played on is a standard issue computer in the Computer Science labs, running Windows 7
with a 1680x1050 screen resolution, a standard mouse and keyboard. The computer will have
the Java Runtime Environment installed.

Feasibility

Overall, our current design for this system is highly feasible. We have constructed a Gantt
chart in order to ensure that the project is completed on time. We have also written up a
section on risk mitigation to ensure that if something out of our control does go wrong, it will
affect the progress of the team as little as possible.

Some sections of our design will entail a lot of work to make sure that they meet the
requirements, we have allocated time accordingly in our Gantt chart. Some areas of the
design have been changed during the design process, to make them more feasible to
complete in the specified time-frame, such as the fault generation engine. The original design
had the map divided up into different zones, then the fault rate and type of the tracks would be
determined based on which zone the track is in. We decided that this would add a lot of
complexity while not necessarily delivering a better user experience, so we have replaced it
with this much simpler model, instead we are having the fault rate of the track as a set value
for each segment of track, and a lookup table to determine the type of fault if one occurs.

Risks

We have tried to avoid risks to the project as a whole, however there are still some risks in the
user and system requirements that we could not avoid. One such risk in our design was to put
a lot of emphasis on the GUI. If the GUI is not well designed, we could lose a lot of the
usability, potentially making the game unnecessarily complicated.

Another risk is that our design for our fault generation engine may be overly complex. When
testing to see if a fault occurs, the engine must take into account a great many factors drawn
in from different sources such as different objects in the game and databases separate from
the game. If we are unable to code the fault generation engine in its current form in time then
we will have to reduce its complexity. This could result in the game being less fun for the
player as it may be too simplistic or too random.

Objectives:

Our objective for the project is to create a fun and appealing game that follows the customers
specification as close as possible. It will be a competitive, turn-based, two player train
management game, that results from the following exact requirements:

User requirements:

1.

2.

8.
9.

10.

11

13.
14.
15.
16.

17.
18.

The player must be able to play the game at the same time as one other
person
The player must be able to play on a map based on Europe, which has at least
5 cities
The player must be given three goals by the game
The player must be able to select one goal to keep at the end of a turn if none
of the goals have been completed
At all points during the game, the player should be able to find out what these
goals are.
The player must be able to accumulate in game resources
a. The player must be able to get at least 10 different in game resources
b. such as different trains and money
The player must be presented with a GUI
The player must be able to use the GUI to choose their start location
The player must be able to see their start location
The player must be able to use the GUI to set routes for their trains
The player must be able to use the GUI to edit routes for their trains
The player must be able to see the faults on the map
The pIayer should be able to save the game state to a file
The player should be able to load a game state from such a file.
The player must be able to buy resources, such as trains, at a store

® oo oo

. The player must be able to maintain and repair, track and trains
12.

The player must be able to see the other player’'s updated location after their
turn has ended
The player must be able to earn resources as a reward for completing goals
The player must be able to quit the game at any time.
The player must be able to create a new game with default values
The player must be able to suffer from track faults
a. There must be at least 2 different track faults
b. One of the faults must be a signal failure
The player must have the number of turns taken shown by the game
The player must have their score shown by the game

System Requirements:

1

2
3.
4

10.

11.
12.
13.

. The system must be able to track which player’s turn it is currently
. The system must be able to keep track of the number of turns that have passed

The system must be able to store both players’ information at the same time

. The system must be able to store the resources belonging to each player

a. The system must be able to allocate the player additional resources
b. The system must be able to remove resources from the player
The system will store the map in a graph data structure
a. The map must include multiple nodes which represent junctions
The system must store a graphical image of Europe displayed to the players
The system must feature a goal engine
a. The goal engine must be able to generate new goals for the players
i. The goal generation must be partly pseudo-random
ii. The goal generation must take account of the current game state
(e.g where trains are/ which tracks have been destroyed)
iii. The goal engine must be linked to a database to fetch goal types
and possible objectives etc.
b. The goal engine must be able to detect when goals are completed
i. The goal engine must give rewards to the first player that
completes a particular goal
i. Should two players complete the goal in the same turn-set, the
goal engine must split this reward between both players
c. The goal engine must be able to delete goals when they have been
completed
d. The goal engine must never have more than 3 goals active at the same
time
The system must ensure that the players have 3 goals at the start of each turn
If the players both complete their turns without completing any goals, the
system must allow the players to each chose a goal to keep and then discard a
goal that neither player chose to keep
a. Should both players choose the same goal a random one is selected
from the remaining two to be removed
The system must have a database with all the details about the different
in-game resources
The system must be able to keep track of the score for each player
The system must be able to check the player’s score against a victory condition
The system must have a GUI
a. The GUI must display the player’s trains
b. The GUI must allow the player to select a start location that then can not
be changed
c. The GUI must display the player’s start location
d. The GUI must allow the player to specify the route of a train

The GUI must display the current routes of the player’s trains
The GUI must allow the player to edit the current route of the trains
The GUI must display all obstacles the the players
The GUI must display the goals to the player
14.The system must be able to store a start node for each player
a. The start node must not be able to be changed after it has been set
15. The system must be able to store the route for each train specified by the
player
a. The routes stored by the system must be editable.
16. The system must feature a fault engine
a. The fault engine must be able to create faults on trains and tracks
b. The fault engine must be able to remove faults from trains and tracks to
restore them to working order
c. The fault generation must be partly pseudo-random
d. The fault generation must be context sensitive (not generate faults for
things that are already suffering from a fault)
e. The fault engine must be able to generate at least 2 different types of
fault with one of them being a signal failure
17. The system should be able to save the current game state
a. The system should be able to convert all facets of its current state into a
unique format (unique to the system state)
18. The system should be able to load a save file
a. The system should be able to restore itself to a previous state in every
detail from a previously generated save file
b. The system should be able to verify that a save file is syntactically
correct before attempting to load the game from the file
19. The system must feature an exit mechanic for the players to stop the game
20. The system must be able to generate the starting conditions for a new game
a. The starting conditions must allow each player to place their start node
b. The starting conditions must allocate both players equal starting
resources

>Q ™o

See Figure 1

User
Requirements 1.0 20 3.0 40 50 60 61 70 714 72 73 74 75 8.0 9.010.011.012.0 13.0 14.0 15.0 16.0 16.1 16.2 17.0 18.0

System
Requirements
1.0 X
2.0 X
3.0
4.0
4.1
4.2
5.0 X
5.1
6.0 X
7.0.0
7.1.0
711
7.1.2
7.2.0
7.21
7.2.2
7.2.3
7.3
7.4
8.0 X
9.0
9.1 X
10.0 X X X
11.0 X
12.0 X
13.0 X X X X X X X X
13.1 X
13.2 X
13.3 X
13.4 X
13.5 X
13.6 X
13.7
13.8 X
14.0 X
14.1 X
15.0 X
15.1 X
16.0 X X X
16.1 X
16.2 X
16.3 X
16.4 X
16.5 X X
17.0 X
17.1 X
18.0 X
18.1 X
18.2 X
19.0 X
20.0 X
20.1
20.2 X

X X X X

X

X X X X X X X X X X
X

X

>

Abstract

Train
TrainID:Int Map
TrainName:String CurrentPlayer:Int oIl
OwnerID:Player PlayerList:Array GoalID:Int
Currentlunction:Int TurnCounter:Int Destloc:Junction
EngineType: Int ActiveGoallist:Array Startloc:lunction Rl EERES (RITEL
;agltiateé11§ Trainlist:List TurnLimit:Int
sFaulty:Boo L E 1 N i =
. ¥ - a CreateGoal() NumCarriages:Int
NumCarriages:Int . DestCountry:Int
NumTier:Int StartGame()
Speed:Int EndGame() CheckComplete():Bool
- ChangePlayer()
MoveTrain(Dest) MainTurnLoop()
RepairFault()
UpgradeTier() 1
1...# as a
1...*%
Junction
JunctionID:Int -
TracksConnectedList:List Q—LE__ Station
IsFaulty:Bool StationName:String
TrainsPresent:Int
RepairFault()

1
Player
PlayerID:Int
TrainList:List

Money: Int "A checkpoint” is a Train is at a
Score: Int type of junction with junction until
HomeStation:Int only 2 ccnrec;io1s, it is at the
ChooseGoal(Goal) no player choice here next junction
o
Figure 2
o g .
Justification

We created a class diagram to ensure that we all understood the design ideas of the project
and so that some basic implementation methods could be agreed and explained throughout
the group.

‘Map’ is the core object of the structure, so all other objects (with the exception of 'Player’) are
directly associated. ‘Station’ is a subclass of ‘Junction’ as it must have all the same
functionality, with an addition- stations will be named. We have decided that an instance of
‘Goal’ will have at least one ‘Station’ instance in it's definition so that they are easier for
players to understand and prioritise. It was decided that all goals should be related to at least
one station, as in real life, trains would not pick up/drop off passengers at any other points
along the track. It was decided that goals are global to ‘Map’ which should encourage
competition, and so, we had to ensure that players are not directly associated with any goals
active at any time.

Players are related only to trains, as they will not own stations or track, and because all goals
are global.

A use case diagram was also created but quickly discarded, as all of the environments we
created made for trivial interactions, that a use case diagram failed to explain any further. We
also considered creating a sequence diagram, however no further clarity could have been
gained from another diagram.

Autumn Term
Week 3

Introduction

Project Organisation |:

Resource Allocation

Role Assessment

Work Breakdown |:

Project Schedule |:

Milestones |:
Monitoring & Reporting

Requirements and Specification

User Requirements
System Requirements
Feasibility

Abstract Architecture Proposal

Review Period 1 _

B Winter Break Spring Term
[T weeks [T weeko [T week10 Xmas 1 [T xmas2 [T xmass [T xmas4 Week 1 [T week2 [T weeks

Assessment 2

Programming 1
Map and Cities

Ab Goals

Graphics Pair 3

Game Engine Group 1 (4 Persons)
Website Group 2 (2 People)

Review Period 2

Spring Term
Week3 [Week4 [Weeks [weeks [Week7

Assessment 3

Programming 2
Scoring System
Obstacles lterative Development

Quatifiable Goal Engine I: Iterative Development

Update Website 1
Review Period 3

: Spring Break Summer Term
|_ Week 8 |_ Week 9 |_ Week 10 Easter 1 |_ Easter 2 |_ Easter 3 |_ Easter 4 Week 1 |_ Week 2

Assessment 4

Re-Design
Re-Specification
Doc's of Changes Needed
Implementation of Changes
Update Website 2

Iterative Development

Presentation Prep.

Review Period 4

Autumn Term Winter Break
Week 3 [T Week4 [T weeks [T weeks [T Week7 [T weeks [weeks [T week10 Xmas 1 [T xmas2 [T xmass [

Critical Path

Introduction

Project Organisation I:

Resource Allocation

Role Assessment

Work Breakdown E

Project Schedule I:
User Requirements

System Requirements

Feasibility

Class Diagram
Justification

Programming 1

Website

Programming 2
Re-Specification
Implementation of Changes
Update Website 2

Presentation Preparation

Review Period 4

Spring Term Spring Break
Xmas 4 Week 1 [T Week2 [T weeks [T Week4 [T weeks [weeks [T Week7 [T weeks [weeks [T week10 Easter 1 [Easter2

TI|WI|T [F [S|S [M[T |[WI|T |F |S[S [M|T |[W[T |F |S|S [MT [WIT |F |S|S [M|T [W|T [F |S|S M|T [W[T |F [S[S |M|T |[W|T [F [S|S |M|T |W|T |F [S[S|M|T |W|T [F [S[S[M|T |W|T |F|[S[S[M|T |W|T |F|S|S[M|T [WI|T |F|S|S [MT [W[T |F |S|S

Team Organisation & Project Plan

Task Priorities, Critical Path, Task Dependencies, etc.

Team Roles-

We defined our team roles from the Belbin Team Inventory[1]. We chose these team roles as
we felt that it fitted with our team dynamic better than more traditional structures. We also felt
that the Belbin team inventory worked better with the agile development process we chose
due to its inherently flatter team hierarchy with the use of the co-ordinator to help resolve any
disagreements in the team.

The roles we defined for the group are as follows:

Plant: Everyone
Resource Investigator: Richard
Co-ordinator: Richard
Shaper: Eashan
Teamworker: Oliver, Sam
Implementer: Mark, Daniel
Specialist: Sam

A Gantt chart (See Figure 3) consisting of the development schedule for each of the
assessments and the critical path (see end of report) was created. This helped to organise the
team and ensure that we kept on schedule to avoid missing deadlines. Each task in the Gantt
chart has been assigned a task priority as follows:

Task Priority
Organisation High
Risk and Mitigation Low
Requirements and Specification High
Abstract Architecture Proposal High

Review Period 1 Medium
Programming 1 High
Website High

Review Period 2 Medium
Programming 2 High

Update Website 1 Low
Review Period 3 Medium
Re-Design High
Implementation of Changes High
Update Website 2 High
Presentation Preparation High
Review Period 4 High

Some tasks depend on the completion of other tasks in order to be started, the task
dependencies are as follows:

Assessment 1 -> Review 1

Assessment 2 -> Review 2

Assessment 3 -> Review 3

Assessment 4 -> Review 4

Role Assessment -> Work Breakdown -> Project Schedule -> Milestones
User Requirements -> System Requirements

Class Diagram -> Justification

Scoring System -> Quantifiable Goal Engine

Re-Design -> Implementation of Changes
Re-Specification -> Documents of Changes Needed

Implementation of Changes -> Website Alterations
Requirements and Specification -> Programming 1 -> Programming 2

Website -> Update Website 1 -> Update Website 2

Proposed Software Engineering Approaches

Agile Development Approach - Refers to the combination of software development methods
in which software solutions can be adapted quickly to suit changes in the requirements and
specification. This is achieved by close and frequent communication between the
development team and the customer. We are told by the customer that the requirements
might undergo major/minor changes as we are developing the project. Our top priority is to
deliver the softwares in phases and engage the customer in all parts of the development
process via face-to-face and electronic communications and ensure their agreement. Rather
than spending a lot of time on planning, heavy documentation and fixed contracts, we are
constantly working towards rapid delivery of useful software in phases and regular review of
circumstances.

Pair Programming - We have decided to use the pair programming technique of the agile
software development methodology as it significantly reduces code generation errors and
avoids major bugs being discovered later on in the development process. This technique will
also allow less experienced programmers in the group to benefit from those with more
experience and knowledge.

Development & Collaboration Tools

jsUML2 - We are using jsUML2 as the software for developing our UML Class diagram.
Despite the fact that the user interface is not very easy to use, it is available for free online,
meaning that it can be accessed from any operating system and from anywhere. Which is
useful if various members of the group want to work on the diagram at different times. jsUML2
also allows us to export the UML diagram as xml, meaning that we can import it into other
programs.

Eclipse - We have decided to use Eclipse for this project. We chose to use Eclipse
specifically because it is very easily extensible, this will allow us to use tools to work with UML
to convert our class diagram into Java code. This will help us to better structure our code.. We
have decided to use Java, this is because it is an object oriented language which is necessary
for our software architecture. Java also has a wide variety of built in libraries which may be
useful when writing our game.

GitHub - We are using GitHub as our version control system for keeping track of changes,
enhance collaboration and also for backing up all of our software code. We have to chosen
GIT to encourage small commits to the project by the team members as well as the fact that it
supports branching of the main repository.

Google Drive - We are using Google Drive as our primary backup for documentation and file
sharing tool between the group. It allows us to access and collaborate in editing our

documentation files at any time and is platform and tool independent.

Risk Assessment & Mitigation

Risk Likelihood | Impact Mitigation

Team Very High Low, if | All assessment documents are stored in the

member managed | shared Google Drive. They can therefore be

unavailable accessed and edited by anyone in the group.

Poor Medium Medium A form of agile development will be used. This

productivity of ensures short development cycles and therefore

individual a sense of urgency is implied.

group

members Generous, but strict deadlines will be given for
each task. Each member is expected to adhere
to these deadlines, and ask for help in good
time, if required.

Total loss of | Very Low Medium Agile software development will be used, so that

team member a working prototype is available at all stages of
development. If a team member is lost, features
may be removed from the project, but it should
still work as a whole.

Incorrect Medium Very High | Keep communication between the developers

system and the customers open so that the

requirements requirements are fully understood by both
parties at each stage.

Requirements | Medium High Keep communication between the developers

inflation and the customers open so that the
requirements are fully understood by both
parties at each stage.
If a particular feature is added to the
requirements later on in the project, explain to
the customer that this may come at the expense
of other features.

Organisation | Low High There will be regular team meetings to check

structure team members are happy in roles, leadership

fall-down structure etc. Re-organisation may then occur if
required.

Loss of | Low Medium Use Version Control (GitHub), Documents are

Data/No stored on Google Drive as a backup.

Backup

Failure to | Low Very High | Strict use of Gantt charts to maintain schedules.

keep Co-ordinator to ensure teams get support if

deadlines struggling

Copyright Low Medium Check existing copyrights, ideas implemented

Claims already

Tool issues Medium Medium e.g. jsUML2, IDE differences. These can be
mitigated by ensuring the team use the same
tools, and we choose reliability by precedence in
our tools.

Conflict Medium Medium Project Co-ordinator would attempt to resolve

between conflicts through compromise.

members

References

[1] Belbin. “Team Role Theory - Belbin Team Roles”, belbin.com. [Online] Available:
http://www.belbin.com/rte.asp?id=8. [Accessed: Oct. 17, 2014].

http://www.google.com/url?q=http%3A%2F%2Fwww.belbin.com%2Frte.asp%3Fid%3D8&sa=D&sntz=1&usg=AFQjCNG8BlMcdZZqhR9mh4yx5WDcztPCHQ
http://www.google.com/url?q=http%3A%2F%2Fwww.belbin.com%2Frte.asp%3Fid%3D8&sa=D&sntz=1&usg=AFQjCNG8BlMcdZZqhR9mh4yx5WDcztPCHQ

