Test Plan for Assessment 3

Test Considerations

Introduction

Testing is a critical part of any software release. This Test Plan document details any
testing we have done for this assessment, whether functional or nonfunctional.
Generally we have used unit tests on new classes, class extensions and their
methods, and black-box testing on the game as a whole and other specifically
designed tests where relevant. As we have used a form of test-driven AGILE
Development, we have tested all relevant places throughout the implementation,
and we have ensured that each stage of the project is fully working as intended at
the end of each of our sprints.

Test Coverage

Clearly the original parts of the project have been well tested in the previous
assessment by Team HEC as detailed by their testing document. Any requirements
that have passed their tests will be assumed as working at the start of this
assessment. To utilise time as efficiently as possible we will therefore not re-test
any of these requirements, unless we are modifying the classes or methods that are
specifically fulfilling these requirements.

All Classes will be thoroughly tested using both Unit Tests and black box testing to
ensure that they are functioning correctly and robustly.

Accessors and mutators will be given a low precedence in testing are unlikely to
harbour any serious bugs that will affect critical system functionality.

Third-party libraries and in-built Java functionality will assumed effectively stable
and therefore will not be tested. We have deliberately chosen third-party libraries
that are very widely used in the hope that they will have very few bugs, and none

that are critical to system functionality.

Testing Environments

10f 37

http://callumhewitt.github.io/LocomotionCommotion/Testing.pdf

Java is a flexible programming language and can be run on a very wide range of
systems. One of our project requirements is that the project runs on the computers
in the Department Labs, therefore all whole system tests- such as black-box testing
on the whole project will be run on these to ensure correct/expected functionality
when run on these computers

Other testing, such as unit testing, that examines source code may be run on other
systems, as the core reason for these tests is to ensure the correct code at low-level
rather than functionality of the system as a whole.

Testing Methods

We have used a wide variety of tests and testing methods within our software
testing to ensure our game is free from errors. These testing methods have
included:

Unit Testing
We isolated the whole program into separate testable units to see if they were fit for

use and whether they corresponded to the design specifications. We built test
classes using JUnit which instantiated the objects with specific input data and called
all relevant methods belonging to the unit class and tested their outputs against
expected outputs using JUnit assertions. We have decided to make use of JUnit due
to it's wide use in testing applications, it allows us to make many assertions about
the functionality of a class and check to ensure that the assertions remain true. By
verifying that the output of each method corresponded to the expected value
(through the use of assertions), we were able to show that our class units worked as
intended. These tests were run near the end of this development cycle to ensure
that the code was all working in its finished state.

To run the JUnit tests, the author of each section of code wrote tests and ran them
using eclipse’s built in JUnit functionality as it gave useful feedback about not only
which tests failed but also why they failed

Black Box Testing
Brief example of how black box testing has been used- forming a range of test
cases, testing them and the results.

System Testing
We will use system testing to test the system works as a whole. This performed by
the developers playing the game, they will press all buttons and ensure that

2 0of 37

everything works as intended and the system is robust enough to handle
unexpected button clicks and events.

Usability Testing

We put the game in front of a completely new user with the game manual to test if
they could easily understand it. We set some initial test instructions for the user and
some test conditions to decide how we would measure if the test was passed.

Acceptance Testing

Due to time constraints in this very short assessment run, we haven't been able to
run any acceptance testing for the project as yet. This is not a major issue as we do
not yet have a final product anyway.

30f 37

Test Design & Results

Unit Tests for CargoGoal Class
A brief test class is written using JUnit that instantiates a Special Cargo Goal and
calls several of its methods and the expected outputs were matched against real
time outputs. All relevant methods and instance data members associated with
CargoGoal Class have been tested via JUnit so coverage is extensive.

The Methods & Data members of the CargoGoal class that we tested are -

boolean specialcargo
String getCargo()
String getSStation()
String getFStation()
void assignTrain() & Train getTrain()
int getReward()

void goalCompletel()

Note: We found an error/bug where the train's speedmod won't reset to the original

value after Special Cargo Goal Completion and fixed it.

Test Description | Expected Result Proof of Result Status
Result
Instantiate Special Cargo Special Cargo The absence of Pass
Special Cargo Goal is Goal is errors on building
Goal and test the | successfully successfully and the assertion
value of instantiated and | instantiated and | ‘specialcargo’
specialcargo’ specialcargo’is | specialcargo’is | being true via
set to true to set to true to JUnit test
confirm it confirm it [testSpecialCargo
Goal()l
Get the cargo A string A string Assertion of the Pass
type for Special | ‘Diamonds’ is ‘Diamonds’ is string ‘Diamonds’
Cargo Goal returned returned via JUnit test
[testCargo()]
Check if the True True Assertion via Pass
Special Cargo Junit test
Goal has a start [testGoalStations(

station

)]

4 of 37

Check if the | True True Assertion via | Pass
Special Cargo JUnit test
Goal has a finish [testGoalStations(
station)]
Get the reward | An integer | An integer | Assertion of a | Pass
for the Special | greater than | greater than | reward being
Cargo Goal zero zero returned which
greater than zero
(via Junit test)
Check if the | The selected | The selected | Assertion via | Pass
CargoGoal has | train should be | train should be | Junit test
successfully assigned to the | assigned to the | [testAssignTrain(l
been assigned to | goal and there is | goal and there is | , the ability to call
a player’s train a decrease in | adecrease inthe | getTrain() method
the SpeedMod | SpeedMod of | of the goal and
of the assigned | the assigned | the decreased
train train speedmod value,
as shown in Fig 1
Check if a | Execution of | Execution of | The absence of | Pass
special cargo | method method errors on calling
goal can | goalComplete() [goalComplete() | the method and
successfully be | should be | should be | assertion via
completed successful successful JUnit test
[testTrainSpeedM
odAfterGoal(]
Check if the | SpeedMod is | SpeedMod is | Assertion via | Pass
speedMod of the | back to original | back to original | JUnit test
player's train is | value value [testTrainSpeedM
restored back odAfterGoal()l

after cargo goal
completion

5o0f 37

1§ Package Explorer | gfu JUnit 52 =g
o® BB | @ 2 ER

Finished after 0,903 seconds

Runs: 6/6 B Errors: 0 B Failures: 0

4 |Fii] com.TeamHEC LocomotienCommotion.Goal CargoGealTest [Runner:

e testCargo (0.775 5]

¢ testTrainSpeedModAfterGoal (0.025 <)
| testSpecialCargoGoal (0016 5)

fi] testgetReward (0.015 5)

o] testAssignTrain (0.016 <)

| testGoalStations (0.007 <)

. b

Failure Trace

lj] Gosljava [J] CargoGoalTestjava %

1 package com.TeamHEC.LocomotionCommotion.Goal;

~

5% import static org.junit.Assert.*;
import java.util.Arraylist;

import org.junit.Before;
import org.junit.Test;
import org.junit.runner.Runiith;

11 import com.TeamHEC.LocomotionCommotion.Card. Card;

12 dimport com.TeamHEC.LocomotionCommotion.Map.Station;

13 import com.TeamHEC. LocomotionCommotion.Map.WorldMap;

14 import com.TeamHEC.LocomotionCommotion.Mocking.GdxTestRunner;
15 dimport com.TeamHEC.LocomotionCommotion.Player.Player;

16 dimport com.TeamHEC.LocomotionCommotion.Resource.Coal;

17 dimport com.TeamHEC.LocomotionCommotion.Resource.Electric;
15 dimport com.TeamHEC.LocomotionCommotion.Resource.Gold;

19 dimport com.TeamHEC.LocomotionCommotion.Resource.Nuclear;
20 import com.TeamHEC. LocomotionCommotion.Resource.0il;

21 import com.TeamHEC.LocomotionCommotion.Train.0ilTrain;

22 import com.TeamHEC.LocomotionCommotion.Train.Route;

23 dimport com.TeamHEC.LocomotionCommotion.Train.Train;

27 @RunWith(GdxTestRunner.class)
28 public class CargoGoalTest {

29
30 Goal goal;
31 Train train;
32 torldMap wm;
33 Station ss,fs;
349 @Before
35 public void setUp() throws Exception {
36 wm = WorldMap.getInstance();
37 GoalFactory gf = new GoalFactory(1);
38 goal = gf.CreateRandomGoal();
39 while (goal.specialcarge == false){
20 goal = gf.CreateRandomGoal();
41
42

<] m
Problems @ Javad Declaration ' B} Console 52

<terminated> CargoGoalTest [JUnit] T:\Computer Science\Appsteclipse\d_4_64bit\jre\bin\javaw.exe (14 Feb 201512:22:40)

>

n

The Goal's Type is : Diamonds
CargoGoal has been successfully initialized : true
when cargo goal is active, Train's Speediod is : 1

(Fig 1 - Running of JUnit Tests for CargoGoalTest class and some outputs)

6 of 37

Unit Test for GoalFactory Class

To ensure that the extended methods in Goal Factory class worked as intended, the
JUnit test class for Goal Factory Class was extended and the extended methods
were called with test data, and the outputs were verified via JUnit.

A series of 500 random goals were created via iteration in the JUnit test class and
the following extended functionalities were tested.

Test Description | Expected Result | Result Proof of Result | Status
Ability to create | One or more | One or more | Assertion via | Pass
one or more | non-special non-special goals | JUnit test
non-special goals | goals are created | are created by | [testCreateRan
(Func.Sys.2.2) by the | the GoalFactory domGoal()]
(Func.Sys.2.3) GoalFactory

Ability to create | One or more | One or more | Assertion via | Pass
one or more | non-special Special goals are | JUnit test
Special goals goals are created | created by the | [testCreateRan
(Func.Sys.2.2) by the | GoalFactory domGoal()]
(Func.Sys.2.3) GoalFactory

Ability to create | One or more | One or more | Assertion via | Pass
one or more | non-special Special Cargo | JUnit test
Special goals are created | Goals are created | [testCreateRan
CargoGoals by the | by the | domGoal(l
(Func.Sys.2.2) GoalFactory GoalFactory

(Func.Sys.2.3)

Ability to create | One or more | One or more | Assertion via | Pass
one or more | Route based | Route based | JUnit test
Route based | goals are created | goals are created | [testCreateRan

goals by the | by the | domGoal(l
(Func.Sys.2.2) GoalFactory GoalFactory

(Func.Sys.2.3)

Ability to create | One or more | One or more | Assertion via | Pass
one or more | Timed based | Timed based | JUnit test
Timed based | goals are created | goals are created | [testCreateRan

goals by the | by the | domGoal(]
(Func.Sys.2.2) GoalFactory GoalFactory

(Func.Sys.2.3)

Ability to create | One or more | One or more | Assertion via | Pass
one or more | Special Combo | Special Combo | JUnit test

goals are created

goals are created

7 of 37

Special Combo | by the | by the | [testCreateRan
goals GoalFactory GoalFactory domGoal()l
(Func.Sys.2.2)

Test each goalto | No goals are [No goals were | Assertion via | Pass
ensure a station | created with an | created with an | JUnit test
isn't included that | unfixable station | unfixable station | [testCreateRan
IS currently | as either the | as either the start, | domGoal()l
unfixable (making | start, via, or final | via, or final

the goal | stations. stations.

impossible to

complete)

(User.GP.2.5)

(Func.Sys.2.1)
(Func.Sys.2.2)
(Func.Sys.2.3)

Note : All the above tests have been performed before ‘score’ class was added to

the game design

8 of 37

File Edit Refactor
P v o) el = w2

[# Package Explorer gfu JUnit 52

Source MNavigate Search Project Run CZT Window Help

Finished after 0.581 seconds

Runs: 171

EEREIREIY L =S SRR L R

TOTRIFEE S B OO

= O | [J] GoalFactoryTestjava 52
o® G| @, 2 B~ ~ |BE ; package com.TeamHEC.LocomotionCommotion.Goal;

B Errors:

0

B Failures: 0 1z
13 @Runi

L I

15

com.TeamHEC LocomotionCommotion.Goal.GoalFactoryTest [Runne| 16
5] testCreateRandomGoal (0.529 <) 1

L

.

= Failure Trace

Problems

<terminated>

3® import static org.junit.Assert.*;[]

uith(GdxTestRunner. class)
ic class GoalFactoryTest {

GoalFactory tester;

@Before

public void setUp() throws Exception {
tester = new GoalFactory(1);

}

@Test
public void testCreateRandomGoal() {

//Booleans used to track creation of special goals
boolean nor = false;

boolean spl = false;

boolean cspl = false;

boolean comhog = false;

boolean routeg = false;

boolean timedg = false;

forfint i = @; i < 5005 i ++)

Goal goal = tester.CreateRandomGoal();

assertTrue(
"GealFactory's goal did not have a valid start station, iteration: " + i,
checkExistence (goal.getsStation()));
assertTrue(
"GealFactory's goal did not have a valid end station, iteration: " + i,
checkExistence(goal.getFStation()));
assertTrue(
“GealFactory's goal did not have a valid cargo, iteratien: * + i,
goal.getCargo() == "Passenger” || goal.getCargo() == "Carge" || goal.getCargo(
assertTrue(
"GoalFactory's reward was not set correctly, iteration: " + i,
goal.getReward() > 8);
assertTrue(
"GealFactorv did not have a valid via station. iteration: " + i.

Declerstion | E) Console 5
GoalFactoryTest [JUnit] TA\Computer Science\Apps\eclipse\d_4_64bitijre\bin\javaw.exe (16 Feb 2015 15:14:20)

@ Javadoc

i

== "Diamonds”

(Fig 2 - Running of JUnit Tests for GoalFactoryTest class)

9 of 37

Unit Tests for TimedGoal Class

A small test class was written for the new TimedGoal class, that generates an instance of
TimedGoal and tests each of its methods to ensure that they are operating as intended.
All new methods relevant to TimedGoal were tested and their outputs were asserted
using expected outputs through JUnit. All of the methods tested in the original GoalTest
class were also implemented to extensive testing has been upheld for this class.

The Methods and Attributes of the Timed class that we tested are -

Station sStation
Station fStation
Train train

int reward

boolean isSpecial
int turnLimit

int startTurn

Station getSStation()
Station getFStation()
Train getTrain()

int getReward()
boolean isSpecial()
int getTurnLimit()

int getStartTurn()

Test Description Expected Result | Result Proof of Result Statu
s

Generates an | isSpecial returns | isSpecial The absence of | Pass

instance of | true returned true errors upon

TimedGoal and
test the value of
isSpecial

instantiating
TimedGoal and
the assertion via
JUnit

10 of 37

[testlsSpecial(l
Test the value of | compareStations | compareStations | Assertion via
sStation returns true returned true JUnit
[testGoalStations()]
Test the value of | compareStations | compareStations | Assertion via
fStation returns true returned true JUnit
[testGoalStations()]
Test the value of | Train is correctly | Train was | Assertion via
train assigned to | correctly JUnit
TimedGoal assigned to | ltestAssignTrain()
TimedGoal
Test the value of | reward should be | reward was | Assertion via
reward greater than 0 greater than 0 JUnit
[testgetReward()]
Test the value of | turnLimit should | turnLimit was | Assertion via
turnLimit be greater than 0 | greater than 0 JUnit
[testTurnLimit()]
Test the value of | startTurn should | startTurn was | Assertion via
startTurn be greaterthanor | greater than or | JUnit
equalto 0 equalto 0 [testStartTurn(]

Note: After this test startTurn was changed to be 0 at the goal's creation and later
changed to reflect the current turn counter once a train was assigned to it, at all points the
startTurn is greater than or equal to 0.

e conparestatic

() == train);

StartTuen() {
oal.getStartTurn(} = @) //If the Timedioal has besn allocated a start turn then it

f umit
nished after 0.8 seconds
Runz 44

B Ereces: 0 O Failwes: 0

AL com, TeamHEC LocomationCommation. Goel TimedGoalTest [Fur 0270 = Failure Trace

11 of 37

Unit Tests for RouteGoalClass

A small test class was written for the new RouteGoal class, that generates an instance of
RouteGoal and tests each of its methods to ensure that they are operating as intended. All
new methods relevant to RouteGoal were tested and their outputs were asserted using
expected outputs through JUnit. All of the methods tested in the original GoalTest class
were also implemented to extensive testing has been upheld for this class.

The Methods and Attributes of the Timed class that we tested are -

Station sStation
Station viaStation
Station fStation

Train train

int reward

boolean isSpecial
Station getSStation()
Station getViaStation()
Station getFStation()

Train getTrain()
int getReward()
boolean isSpecial()

Test Description Expected Result | Result Proof of Result Status
Generates an | isSpecial returns | isSpecial The absence of errors | Pass
instance of | true returned true upon instantiating
RouteGoal and TimedGoal and the
test the value of assertion via JUnit
isSpecial [testlsSpecialll
Test the value of | compareStations | compareStations | Assertion via JUnit Pass
sStation returns true returned true [testGoalStations()]
Test the value of | compareStations | compareStations | Assertion via JUnit Pass
viaStation returns true returned true [testGoalStations(]
Test the value of | compareStations | compareStations | Assertion via JUnit Pass
fStation returns true returned true ItestGoalStations()]
Test the value of | Train is correctly | Train was | Assertion via JUnit Pass
train assigned to | correctly [testAssignTrain()

TimedGoal assigned to

TimedGoal

12 of 37

Test the value of | reward should be

reward

greater than 0

reward was
greater than 0

Assertion via JUnit
[testgetReward()]

Pass

Coal{ 200}
1{z0a};

ArrayListeCards

trainz);

&8 trafn = mew 0I1Train(8, true, new Route(Worldiap.getTnstance() AMSTERDAM), alaye

poal.assignTrain{train);

ossertTrue(conpareSta

{
ns{goal . getsstation(

(B
fons(goal.getFstation()});

© = mew Electric(208);
muclear = new Nuclear (209} ;

= new ArrayListoCards{);
ArrayListeGoals new ArrayListcgoal:();
ArraylisteTradns trains = new ArraylisteTradna(};

sal.getvia()));

] gssertTrue(comparestat

E public void testAssignTrain() {

3 assertTrue(™", goal.getTrain() = train); //Ro " Iy b
5

| Wit 22

ished after 0.3

s 404 o Brrars 0

Fil com TeamHEC i Gaal R Mest [Runner: JUnit 4] (0.282 5

e

O Failures: 0

= Failure Trace

13 of 37

Unit Tests for ComboGoal Class

A small test class was written for the new ComboGoal class, that generates an instance of
ComboGoal and tests each of its methods to ensure that they are operating as intended.
All new methods relevant to ComboGoal were tested and their outputs were asserted
using expected outputs through JUnit. All of the methods tested in the original GoalTest
class were also implemented to extensive testing has been upheld for this class.

The Methods and Attributes of the Timed class that we tested are -

Station sStation
Station viaStation
Station fStation
Train train

int reward

boolean isSpecial
int turnLimit

int startTurn

Station getSStation()
Station getViaStation()
Station getFStation()
Train getTrain()

int getReward()
boolean isSpecial()
int getTurnLimit()

int getStartTurn()

Test Description Expected Result | Result Proof of Result Status
Generates an | isSpecial returns | isSpecial The absence of | Pass
instance of | true returned true errors upon
RouteGoal and instantiating
test the value of TimedGoal and
isSpecial the assertion via

JUnit

[testlsSpecial()l
Test the value of | compareStations | compareStations | Assertion via | Pass
sStation returns true returned true JUnit

[testGoalStations()]
Test the value of | compareStations | compareStations | Assertion via | Pass
viaStation returns true returned true JUnit

[testGoalStations()]

14 of 37

Test the value of | compareStations | compareStations | Assertion via | Pass
fStation returns true returned true JUnit
[testGoalStations()]

Test the value of | Train is correctly | Train was | Assertion via | Pass
train assigned to | correctly JUnit

TimedGoal assigned to | ltestAssignTrain()

TimedGoal

Test the value of | reward should | reward was | Assertion via | Pass
reward be greater than | greater than o JUnit

0 [testgetReward()]
Test the value of | turnLimit should | turnLimit was | Assertion via | Pass
turnLimit be greater than | greater than o JUnit

0 [testTurnLimitOl]
Test the value of | startTurn should | startTurn was | Assertion via | Pass
startTurn be greater than | greater than or | JUnit

or equalto 0 equalto 0 [testStartTurn(l

Note: After this test startTurn was changed to be 0 at the goal's creation and later
changed to reflect the current turn counter once a train was assigned to it, at all points the

startTurn is greater than or equal to 0.

15 of 37

Black Box Testing (Goal Extensions)

Test Description Expected Result Result Proof of Result Status
For Special Cargo | ‘Diamonds’ is | ‘Diamonds’ is | As shown in Fig. 1, | Pass
Goals, Cargo should | displayed on the | displayed on the | ‘Diamonds’ is
be set to Diamonds | card for Special | card for Special | displayed on the
and a player should | Cargo Goal and a | Cargo Goal and a | Special Cargo Goal
be able to choose | player is able to | player is able to | and it has been
such a goal add that goal to his | add that goaltohis | added to player's
list of goals list of goals list of chosen goals
For Special route | A route station is | A route station is | As shown in Fig. 1, | Pass
based goals, a | specified for | specified for | a route/via station
via/route station | Special route | Special route | ‘Madrid’ IS
should be specified | based goal and a | based goal and a | displayed on the
and a player should | player is able to | player is able to | Route Based Goal
be able to choose | addthat goaltohis | add that goaltohis | and it has been
such a goal list of goals list of goals added to player's
list of chosen goals
For Special Timed | A turn Llimit is | A turn limit is | As shown in Fig. 2, | Pass
based goals, specified for | specified for [a Turn Limit of '3’
a turn limit should be | Special Time | Special Time | is displayed on a
specified and a player | based goal and a | based goal and a | Special Route Goal
should be able to | player is able to | player is able to | and it has been
choose such a goal add that goal to his | add that goaltohis | added to player's
list of goals list of goals list of chosen goals
For Special Combo | Both turn limit and | Both turn limit and | As shown in Fig. 2, | Pass
Goals, a turn limit and | route station are | route station are | a Turn Limit of ‘12’
a route station should | specified on the | specified on the | and a route station
be specified and a | the goalcardanda | the goalcardanda | ‘Moscow' are
player should be able | player is able to | player is able to | displayed on the
to choose such a goal | add that goal tohis | add that goalto his | Combo Goal and it
list of goals list of goals has been added to
player's list of
chosen goals
Attempttocompletea | The non-special | The non-special | As shown in Fig 4, | Pass
standard (non-special) | goal is completed | goal is completed | the non-special
goal and the player is | and the player is | goal is completed
rewarded for the | rewarded for the | and the player is
(Func.SYS.2.4) completion of the | completion of the | rewarded and the
goal goal Goal Completion
message is
displayed.
Attempt to completea | The Special Cargo | The Special Cargo | There is no | Pass
Special Cargo Goal Goal iscompleted | Goal is completed | screenshot of this
(Func.SYS.2.4) and the player is | and the player is [test due to it

16 of 37

rewarded for the
completion of the
goal

rewarded for the
completion of the
goal

displaying the
same message
and using the

same method as a
standard goal.

Attempttocompletea | The Special Route | The Special Route | There is no | Pass
Special Route based | Goal is completed | Goal is completed | screenshot of this
goal and the player is | and the player is | test due to it
(Func.SYS.2.4) rewarded for the | rewarded for the | displaying the
completion of the | completion of the | same message
goal goal and using the
same method as a
standard goal.
Attemptto completea | The Special Timed | The Special Timed | There is no | Pass
Special timed goal Goal is completed | Goal is completed | screenshot of this
(Func.SYS.2.4) and the player is | and the player is | test due to it
rewarded for the | rewarded for the | displaying the
completion of the | completion of the | same message
goal goal and using the
same method as a
standard goal.
Attemptto completea | The Special | The Special | There is no | Pass
Combo Goal Combo Goal is | Combo Goal is | screenshot of this
(Func.SYS.2.4) completed and the | completed and the | test due to it
player is rewarded | player is rewarded | displaying the
for the completion | for the completion | same message
of the goal of the goal and using the
same method as a
standard goal.
When a player fails to | Goal Failed | - Onexceedingthe | As shown in Fig. 3, | Pass
complete a goal in | Message is | turn limit, Goal | a message was | (Fail if
certain time limit after | displayed Failed message is | displayed to the | train
assigning the goal to | whenever the turn | displayed when a | player about him | hasn't
his train, Goal Failed | limit is exceeded | train has been to | not being able to | been
Message should be | after assigning the | the start station, | complete the goal | to start
displayed. goal to a train otherwise it is not. | in the required | station
(Func.SYS.2.4) (Bug) time limit)

Note : All the above tests have been performed before ‘score

game design

' class was added to the

17 of 37

GOAL SCREEN

TICKET HNO: 1134 -56T0-904

Biamonds w826

Vilnuis STHITDATE

Yienna Amyre
Special Cargo Goal \

Cargo | 820
Helsinki st pare
Reykjavik Madvrid:

Route Based Goal

(Figure 1)

GOAL SCREEN

TICKET HO: 1134-5678-90A

Passenger Turn Limit: 3 520 K

Bern STARN DATE s

Berlin Anypore
Turn Based Goal

TICKET HO: 1134-5678-90A

Passenger Turn Limit: 12 3604

Monaco sTaarghaTe

Rrague Moscow
Combo Goal

TICKET HO: 1134-5678-90A

Cargo 443:0
Wienna STARR DATE
Berlin Anyore

(Figure 2)

18 of 37

8} LocomotionCommoti

GOAL SCREEN ARIUew 0 SCORE 0 jhbwlig jhbwlig it's your turn =
Plan Route "a 0O

.
L)

GOAL FAILED!
You failed to complete the route: Reykjavik to London
Better luck next time!

CLICKTO CONTINUE

[mMaDrID] [MoNAcO] [BERN

= jhbwlig's TURN

e}

LB

= © 1050 & 200 ¥ 576 % 200 & 200 CARDS: AVAILABLE ¢ SHOW CARDS

(Figure 3 - Message displayed on failing a goal)

19 of 37

GOAL SCREEN a 0 SCORE 0 b bit'syourturn
Berlin whrowe ')
9
Bern Anyore

Gargo 3. \

@
o
O O

GOAL COMPLETE!

l

You've successfully complete the route: Bern to Rome o)
you've won 183

CLICKTO CONTINUE

(maDRID| [MONACO] [BERN |

sa S

(Figure 4 - Message displayed on completing a goal successfully)

Unit testing for Shop

In order to ensure that the methods added to the Shop class, the shopTest was extended
to test the newly added buyTrain function. All acceptable inputs for the buyTrain method
were tested and their outcomes were asserted through expected outcomes in JUinit. The
methods originally implemented in the Shop were also tested to ensure extensive testing
has been upheld in this class.

Test Description Expected Result | Result Proof of Result Status
The buyTrain | The player's gold | The player's gold | The JUnit test for | Pass
function is called | is reduced by the | was reduced by | the size of the
with “Coal” as the | price of the train | the cost of the | players list of trains
parameter and the train is | train and thetrain | increasing by one
added to their list | was added to | and their gold
[Func.SYS.4.91 of trains their list of trains | reducing by the cost
of the train
The buyTrain | The player's gold | The player's gold | The JUnit test for | Pass
function is called | is reduced by the | was reduced by | the size of the
with “Oil" as the | price of the train | the cost of the | players list of trains
parameter and the train is | train and thetrain | increasing by one
added to their list | was added to [and their gold
[Func.SYS.4.9 | of trains their list of trains

20 of 37

reducing by the cost

of the train
The buyTrain | The player's gold | The player's gold | The JUnit test for | Pass
function is called | is reduced by the | was reduced by | the size of the
with “Electric” as | price of the train | the cost of the | players list of trains
the parameter and the train is | train and thetrain | increasing by one
added to their list | was added to | and their gold
[Func.SYS.4.91 of trains their list of trains | reducing by the cost
of the train
The buyTrain | The player's gold | The player's gold | The JUnit test for | Pass
function is called | is reduced by the | was reduced by | the size of the
with “Nuclear” as | price of the train | the cost of the | players list of trains
the parameter and the train is | train and thetrain | increasing by one
added to their list | was added to | and their gold
[Func.SYS.4.91 of trains their list of trains | reducing by the cost
of the train
The repairStation | The players gold | the players gold | The JUnit test for | Pass
function was | is decremented | was the station isFaulty
called on a test | by 300 and the | decremented by | becoming true and
station stationisrepaired | 300 and the | the players gold
station was | reducing by 300
repaired
the repair station | the station | the station | the JUnittest forthe | Pass
function was | remains faulty | remained faulty | station isFaulty
called on a test | and the players | and the players | remaining true and
station when the | gold remains the | gold did not | the players gold not
player had no | same change changing
gold
the upgrade | The station level | the station level | the JUnittest forthe | Pass
station function | increasing by one | increased by 1 | station level
was called on a | and the players | and the players | increasing by one
test station gold reducing by | gold was | the the player's gold
400 reduced by 400 reducing by 400
The upgrade | the station level | the stations level | The JUnit test for | Pass
station function | and the player's | and the players | the players gold

was called on a
test station when
the player had no
gold

gold should both
remain
unchanged

gold both
remained

unchanged

remaining the same
and the station's
level not changing

21 0f 37

Unit test for TeleportCard

Originally the Teleportation WildCard did not function as intended, upon activation it
would teleport the player's first train to a single pre-set station (London). This has now
been altered to teleport a random train (owned by the player) to a random station on the
map. A small extension was made to the original JUnit test class in order to ensure this
new functionality was implemented correctly and worked as intended. The test table
below only includes the extensions to the JUnit test as all original functionality and unit

testing will have been performed by the previous team.

Test Description

Expected Result

Result

Proof of Result

Status

Activating the
card moves a
random train
(owned by the
player) to a
random location.
(Func.SYS.4.8)

A random trainis
moved to a
random station.

A random train
has moved to a
random station.

Assertion via JUnit
{testimplementCar
d0l

Pass

22 of 37

Black box testing for TeleportCard

Test Description | Expected Result | Result Proof of Result Status
Activating the | Arandom trainis | A random train | See before | Pass
card moves a | moved to a | has moved to a | activation and after

random train | random station. random station. | activation

(owned by the
player) to a
random location.
(Func.SYS.4.8)

screenshots below.
The Orange train
has moved from
London to Madrid.

23 0of 37

GOAL SCREEN Turn 35 Sam 0 SCORE 0 Sam Samit's your turn

REYKJAVIK OSLO | | STOCKHOLM HELSINKI

E—

DUBLIN] [AmsTERDAM] [BERLIN] [WARSAW |

)
)

e

()

EIJ Teleport
Card

| MADRID MONACO BERN VIENNA

ROME AT (g)
o \
7

& 50 @& 200 3 200 % 200 2 20 CARDS: AVAILABLE | SHOW CARDS

GOAL SCREEN Turn 35 Sam 0 SCORE 0 Sam Samit's your turn

ey ey
N/

DUBLIN| [AMSTERDAM] [BERLIN] [WARsAW |
P

IMADRIDI IMONACOI [BERN

/= Sam's TURN
O

= O @ 2w 3 20 Y w0 % 200 CARDS: AVAILABLE 0 SHOW CARDS

24 of 37

Unit Testing for Faults

A short test class was written for testing faults within the game. Although the ‘Faults’
implementation spans several several classes, we have tested it as one system.

The Methods and Attributes of we have tested for Faults are-

e WorldMap Class

o generateFaults()
e Station Class

o isFaulty()

O O O O O O

isRepairable()
makeFaulty()
fixFault()
getStationLevel()
upgradeStation()
getFaultRate()

The faults section of the project was intended to fulfil the following Requirements:

User.GP.6.3: There MUST be at least two obstacles in the game.

The requirement User.Ul.10 also refers to faults, however this is about the GUI which is to

be tested using a black box test, later in this document.

Test Description | Expected Result | Result Proof of Result Status
Station start | Station initialises | Stationinitialises | Assertion via JUnit | Pass
levelis O at level 0 at level 0 passes
Station start fault | Station fault rate | Station faultrate | Assertion via JUnit | Pass
rate is 0.1. returns 0.1 when | returns 0.1 when | passes

at level 0. at level 0.
Station can be | Station level | Station level | Assertion via JUnit | Pass
upgraded increases when | increases when | passes

upgraded upgraded
Station fault rate | Station fault rate | Stationfaultrate | Assertion via JUnit | Pass
is lower at higher | decreases when | decreases when | passes
levels upgraded upgraded
Station is initially | Station isFaulty() | Station isFaulty() | Assertion via JUnit | Pass
not faulty. method returns | method returns | passes

false. false.
Station is initially | Station Station Assertion via JUnit | Pass
repairable. isRepairable() isRepairable() passes

method returns | method returns

true. true.
Station can be | Station isFaulty() | Station isFaulty() | Assertion via JUnit | Pass
made faulty returns true, | returns true, | passes

250f 37

when station is
broken.

when station is
broken.

Station can be
fixed if not
permanently
damaged

Station isFaulty()

returns false
again after
fixFault() is
called

Station isFaulty()

returns false
again after
fixFault() is
called

Assertion via JUnit
passes

Pass

26 of 37

1 package com.TeamHEC.LocomotionCommotion.Map;

3@ import static org,junit,Assert,*;[

24

25 BRunWith(GdxTestRunner.class)
26 public class FaultsTest {

27
28
29
302
31
32
33

602

Station testStation;

@Before
public void setup(}{

}

testStation = WorldMap.getInstance().stationslist.get(@);

BTest //test upgradeStation()
public void upgradeStationTest(){

}

assertTrue("Station initialises as Level @", testStation.getStationLevel() == 8);
assertTrue("Station fault rate is initially 8.1%", testStation.getFaultRate() == 0.1);
for(int 1 = 1; 1 < 5; i+4){
testStation.upgradeStation();
assertTrue("Station can be upgraded", testStation.getStationLevel() == i);
System.out.println(testStation.getFaultRate());
assertTrue("Station fault rate decreases when upgraded", testStation.getFaultRate() <= 8.1);

BTest //test isFaulty(), makeFaulty(), fixFault()
public void makeFaultyTest(}{

}

assertfalse("Station initialises as not-faulty", testStation.isFaulty());
agssertTrue("Station initialises as repairable”, testStation.isRepairable(});
testStation.makeFaulty();
assertTrue("Station can be made faulty", testStation.isFaulty(});
if(testStation.isRepairable(}){

testStation. fixFault();

assertfalse("Station can be successfully fixed", testStation.isFaulty(});

BTest //test generateFaults()
public void generateFaultsTest() {

for(int 1 = @; 1 < 500; i+4){
WorldMap.getInstance().generateFaults();
1

Boolean flag = false; //creates a flag to determine if any of the stations in newMap are faoulty

for{int 1 = @; 1 < WorldMap.getInstance().stationsList.size(); 1++3{
if(WorldMap.getInstance().stationsList.get(i).isFaulty(3) {
flag = true;
WorldMap.getInstance().stationsList.get(i). fixFault();

1
assertTrue("Some faults are successfully generated at random.", flag);
a3 B Errors: 0 0

‘l"'E|c:um.TaamHEC.annmutinnCummntinn.Map.FaultsTBst [Runner: JUnit 4] (0.094 =)
¢l generateFaultsTest (0.073 =)

tE] makeFaultyTest (0.016 =)

E upgradeStationTest (0,005 s)

27 0of 37

Black box testing for Faults

The faults section of our extension to the HEC project newly fulfils the requirements:

Func.OD.4.2 Game SHOULD alert players when a random event occurs.
USER.GP.6.3 There MUST be at least two obstacles in the game.
USER.Ul.10 MUST display hazards on screen.
Test/Scenario Expected Result | Result Proof of Result Status
Runagametosee | Faults will | As expected, | See the | Pass
faults appear at | randomly occur | several faults | screenshots below
random on the | throughout the [appear on the | thistable.
map. course of the | map.
game.
Attempt to move | The train cannot | The train cannot | See the | Pass
to a faulty station move to that | move to that | screenshots below
station and is | station and s | thistable.
returned to the | returned to the
previous station. | previous station.
A warning | A warning
message is fired. message is fired.
Attempt toleavea | The train cannot | The train cannot | See the | Pass
faulty station leave the station. | leave the station. | screenshots below
A warning | A warning | this table.
message is fired. message is fired.
Repair astationby | The station is no | The station is no | As shown in the | Pass
clicking the | longer faulty and | longer faulty and | screenshot below,
‘repair” button on | the station icon | the station icon | the station was
the station info | goes to the | goes to the | faulty and is then
panel standard one standard one repaired
Attempt to repair | Warning Warning See the | Pass
a non-repairable | message fires to | message fires to | screenshots below
faulty station prompt user of | prompt user of | thistable.
the illegal move the illegal move

Test1

28 of 37

Test 2:

XN (AR D

--rqa Of)

| LONPON | PARIS
L]
° O

DUBLIN| |AMSTERDAM| | BERLIN

—D A

LONDON PARIS

0—2

pe - —

Sorry

The station is faulty. You must repair it to continue!

CLICKTO CONTINUE

Y e ot

l
\DUBLIN AMSTERDAM| | BERLIN

E e

LONDON PARIS

0—2

29 of 37

Test 3

AN
VILNIUS '

N\ ‘ ' /7
Sorry

The station is faulty. You must repair it to continue!

CLICKTO CONTINUE

Test 4.
GOAL SCREEM shadl 0 SCORE 0 sdgad achd ity your wurn =
osLa| [srockHouw| [mrLsinm |
= §m e B omr canms ANBILABLE 1 SHOW CARDS

30 of 37

_ GOAL SCREEN shdl O SCORE 0 sdgsd sl it's your wurn =

[Hapaii | |Homess| | sers
[useom | Nrore]
O O

= o n w m B o 164 o aHETS: ss]ARLE F NI CARLS

Test s

Sorry!

This station is beyond repair.

CLICKTO CONTINUE

310f 37

Black box testing for Score

Most of the work in creating a score system was in pulling apart the “gold” and “points”
systems that was implemented when we received the project from the previous group.
The actual implementation of Score when finished is quite low level, with a mutator in
Player, a Score class extending Resource and a method in goal that adds score.

Func.SYS.1: System must keep both players’ score

Func.SYS.8.1: System must be able to add points to a players score
Func.Sys.8.2: System must be able to assign points to a randomly generated
goals.

Func.Sys.4.1: System must track of players resources in real time

It was decided that none of these components needed testing using JUnit, as any tests of
mutators etc are trivial. Black box testing however would show the successful awarding of
points to a player and their presence on screen.

The only time a player may receive points is when they complete a goal:

A goal from Berlin to Monaco was completed by player 1 with a reward of 390 gold and 3

Score.
GOAL SCREEN Turn 12 iop 0 SCORE 0 werty iop it's your turn =
Possenger w0 K] [sTockroLm) [HELSINKT]
Berli
Monaco v
O
= © s00 & 20 T 20 % 20 2 0 CARDS: AVAILABLE o SHOW CARDS

32 of 37

GOAL SCREEN Turn 13 jop 3 SCORE 0 werty wertyit's your turn

osLo| [sTockHoLm (Hewsinki)

O

TN SN
(—-) @) (HD
h A M A 4

= & 400 & 200 ¥ 200 % 200 & e CARDS: AVAILABLE 0 SHOW CARDS

Black box testing for ending the game

The ability to end the game and have the program close after declaring the winner was
implemented, this was a simple function in core game that the previous developers had
named but not implemented. This functionality was black box tested:

Func.Sys.3.5 : System must be able to declare an end to the game once the game end
condition has been reached.

Func.Sys.13: System must be able to terminate itself safely.

33 of 37

GOAL SCREEN

Turn 49 gqwerty 0 SCORE 0 uiop qwerty it's your turn

1l

LISBON

(e

= Qoo & e B 200 %o % 200 CARDS: AVAILABLE 0 SHOW CARDS
GOAL SCREEN Turn 50 qwerty 0 SCORE 0 wuiop uiop it's your turn -
T
Thank you, you've completed the game!
The Game was a draw!! Well done to both players
CLICKTO CONTINUE
ol
= uiop's TURN
f’_.\'l
¥
|_/\’S:]
P
I_\!/_I
= O o @ 00 ¥ 200 % 200 % 200 CARDS: AVAILABLE 0 SHOW CARDS

34 of 37

Usability Testing
Test Conditions

The test will be run on the standard lab setup in the department labs as one of our
requirements is for the system to work on these machines. Developers will not be present
in order to ensure that the participants are not given hints either deliberately or
inadvertently. All efforts will be made to ensure that the users are acting independently at
all times.

The participants will be picked by being anyone passing by in the corridor outside the
Software Laboratories in the Department of Computer Science, University of York.
However, we will ensure that none of the participants have played any version of
Locomotion Commotion before.

Method
1. Give a pair of new users the game manual to read.
2. Open the game for the users- we are testing usability of the game, not the users’

abilities to open an executable file.

Ask the users to complete each task specified in the table below.

4. After each task is complete, immediately ask the users to rate how easy it was to
understand and, where relevant, how challenging it was to complete.

5. Ease of understanding will be marked on a 5 point scale, where Very Easy (5) is our
optimum result

6. Level of Challenge will be marked on a 9 point scale where 1 is too easy, 5 is just
right and 9 is too hard. 5 is our optimum result again. The actual score for this will
be the difference between 5 and the result recorded.

7. If the marks for the tests average out as 3.5 out of 5 or higher, the test passes.

w

Participants
The participants were all aged 18-20, which, although it is a limited range, fits the

demographic of our expected audience for the game. There were 4 participants, of which
1 was female and 3 were male.

Results

Test/Scenario Expected Result (Proof of) Result Status
Start a game Will be measured | Scored an average | Pass.
(50 turn limit) by Ease of | of 5.0 for Ease of

Understanding only | Understanding.
as this is not an
aspect of gameplay.
The score will be
3.5 or greater.

350f 37

Select a goal Will be measured | Scored an average | Pass.
by Ease of | of 45 for Ease of
Understanding only | Understanding.
as this is not an
aspect of gameplay.
The score will be
3.5 or greater.
Assign a goal to a | Will be measured | Scored an average | Pass.
train by Ease of | of 4.0 for Ease of
Understanding only | Understanding.
as this is not an
aspect of gameplay.
The score will be
3.5 or greater.
Complete a goal Will be measured | Scored an average | Pass.
on both scales. | of 45 for Ease of
These scores will | Understanding and
each be 35 or |40 for Level of
greater. Challenge.
Complete a further | Will be measured | Scored an average | Pass.
two goals on both scales. | of 4.5 for Ease of
These scores will | Understanding and
each be 35 or |35 for Level of
greater. Challenge.
Finish the game Will be measured | Scored an average | Pass.
on both scales. | of 4.0 for Ease of
These scores will | Understanding and
each be 35 or |40 for Level of
greater. Challenge.

Additional Notes

The participants praised the comprehensiveness of the user manual as well as the
on-screen prompts.

The Level of Challenge became an average of 3.5 for Level of Challenge for completing a
total of three goals, this is a near miss. It was thought that the Level of Challenge was
slightly too hard, particularly for turn-limited goals. Some attention should be paid to this
in further development and further tests should be undertaken in the next phase.

36 of 37

Trivial Requirements:

We felt that some of the system requirements, that had been traced by HEC already in

the previous assessment didn't need re-testing as the code hasn't been modified. The

following are those requirements Func.Sys.2.3, Func.Sys.3.1, Func.Sys.3.2, Func.Sys.3.3,
Func.Sys.4.3, Func.Sys.4.5, Func.Sys.4.6,, Func.Sys.4.8, Func.Sys.4.9, Func.Sys.4.10,
Func.Sys.5.1, Func.Sys.6.1, Func.Sys.6.2, Func.Sys.6.3, Func.Sys.7.2, Func.Sys.10,
Func.Sys.11.4, Func.Sys.12.2, Func.Sys.15.

Some of the optional System Requirements were left out due to time constraints :

Func.Sys.2.5: System should have special goals which provide Wildcards as reward

Func.Sys.4.5 : Stations Could randomly generate extra resources at the end of a turn.

37 of 37

