

Project Extension Report

Introduction
The general approach to extending the project has been turning it from an effective
implementation of the base game functionality into a game which actually
challenges and engages the players. The game is now enjoyable to play. We have
endeavoured to increase variety, competitiveness, and usability within the game to
ensure that the gameplay experience is as smooth and entertaining as possible.

Justification of Change
Some justifications of change may refer to the User and/or System Requirements.
These are the requirements specified by Team HEC in their original project
Requirements Document. For convenience, these requirements have been added as
an Appendix the end of this report.

Architecture Justifications
The original project that we selected from Team HEC has a great source code
foundation to build on as it utilises the Model-View-Controller architectural pattern
for implementing user interfaces, we have attempted to extend the MVC principles,
where relevant. This means that our game logic is effectively decoupled from the
user interface.

GUI Justifications
In extending the functionality of the game, we have aimed not to clutter the screen
too much with additional buttons. As more and more information is displayed to the
user, it creates an unintuitive inte rface. This could cause confusion as a s the players
may not understand all the different - yet potentially similar -UI elements. Therefore
each additional UI feature was carefully vetted for usefulness before we decided to
add it. Each UI change or addition has been appropriately justified and recorded in
this document.

The project we picked up consistent and well structured design. In the design of any
new GUI elements, we have aimed to keep consistency with the original project’s
design methodologies.

1 of 10

Score
Justification of Change
In order to make the game more competitive we’ve added a score counter for each
user. This gives the game a convenient end goal as users compete for the highest
overall score. At the start of this assessment, the functionality for players to have a
score was already implemented. This value was stored as a variable within the
Player class, we considered the way it was previously implemented to be
inconsistent with the rest of the game’s resource system so a Score class was
created.

User.GP.7.1 User Must be able to score points, such that the player with the

most points will win the game.
User.GP.2.3 Goals Must support at least 10 different goals.
User.GP.2.4 Each Goal Must have an associated number of points a player

can score for completing it
User.UI.3 Must clearly show both players’ scores.

Architecture Justifications
Previously there was no way for players to be given score in the game. Players now
receive score once goals have been completed. This change was made to bring the
game in line with the brief for this assessment. The score was implemented as a
class which inherits from the Resource class. This was chosen so that additional
functionality can be added to the score system with relative ease, this follows the
style in which other resources were implemented, which keeps the architecture
style consistent.

The methods by which score is increased exist in the Player class. This is because
any score attributes are owned by each instance of player and, also, so that it is
clear which player’s score is being increased. The addition of the score system
makes the game much more competitive, as the players can measure how they are
doing, when compared to the other player.

GUI Justifications
With regards to the GUI, the score is displayed at the centre of the top of the screen,
during the game, to make sure it is easily visible to the players. This updates
whenever a goal is completed and at the end of a turn, so that players always know
their score.

Relevant Testing

2 of 10

See test plan pages 32-33 for black box testing of the score system.
Shop
Justification of Change
Over the course of this assessment, several features have been added that involve
the player spending money in order to achieve some function. These features were
added to the shop class as this helped to maintain the current structure of program.

User.GP.3.1 Players Must be able to obtain resources.
User.GP.13 There Must be an in game currency.
User.GP.14 Users Should be able to purchase resources.

Architecture Justifications
Over the course of this assessment, several functions have been added to the shop
class. The functions added were buyTrain, repairStation and upgradeStation. These
functions were all added to the shop class due to the fact that they consist of the
player spending money and then some action being performed. This keeps all the
functions that involve spending money in the shop to help maintain the current
structure of the program.
Functions to support this have also been added to the player class and the station
class. These classes deal with changing the resources of the player and the state of
the station.

GUI Justifications
At the start of the assessment, the shop only had the functionality to buy and sell
cards and fuel. Over the course of this assessment, functions have been added to
the Shop class and the Player class to provide the backend logic for buying trains.
The shop user interface has had the required buttons added to it to be able to buy
trains to it, however these are not being displayed due to the underlying design of
the shop GUI.

The shop GUI uses the same buttons for both buying and selling. This would not
work well for buying and selling trains. The ideal solution for this would be to
redesign the shop GUI into two classes, one for selling and one for buying. This was
not done, due to the fact that we prioritised other features and extensions over the
shop. Therefore, we did not have the time to make the changes we felt would have
been necessary to ensure the shop would be extensible by another team.

Unfortunately, this decision has lead to the shop GUI becoming more decentralised
than before, as the user interface elements for both buying and repairing stations

3 of 10

being added elsewhere. We decided to add both of them to the station info panel as
we felt like this was the most intuitive place for the the player to find them as they
are directly related to a particular station. The backend functionality still exists as a
single class, which allows us to keep all the methods relating to the buying and
selling of resources in one place, which helps with readability for future
programmers.

Relevant Testing
See test plan pages 20-21 for unit testing of the shop.

4 of 10

Faults
Justification of Change
We have added faults to make the game more dynamic and engaging. This also
fulfils the assessment requirements, as well as several of the specified
requirements, detailed below.

Func.OD.4.2 Game SHOULD alert players when a random event occurs.

USER.GP.6.3 There MUST be at least two obstacles in the game.
USER.UI.10 MUST display hazards on screen.

Architecture Justifications
At the start of this assessment there was no implementation of obstacles within the
game. We have since implemented two kinds of fault- stations, these are both
junction faults that occur on stations around the map, some of these can be fixed
whereas some are permanent. The faults are generated in a method in the
WorldMap class which iterates over the list of stations, and decides whether or not
they become broken.

When a station is broken, a boolean variable isFaulty in the station object is set to
true. We implemented faults as a boolean in Station as it didn’t really make sense to
have a ‘Fault’ object when they can be represented more simply. A fault on a station
means that any train which tries to move to it will be returned to the last station it
went through. This is done in the Route class by checking whether the station is
faulty each time a train moves, within the Route class’ update() method.

The decision as to whether a particular station will become faulty is determined by a
probability that is dependant on a station’s level (private int

stationFaultLevel). All stations start at level 0, which means they will have a 1%
chance of becoming faulty on a particular turn. As stations are upgraded, this
probability is reduced down to 0.2% in decrements of 0.2% each, for levels 1 up to 4
(which is the maximum level). A player can upgrade a station they own at any point
during the game, providing it is not faulty.

GUI Justifications
A faulty station is displayed to the user on the GUI as having a cross on it. The button
is updated by calling the updateButton() method in the Game_Map_Station
class whenever it becomes faulty or is repaired. This is an extended of the previous

5 of 10

changeOwner() method from Team HEC’s original implementation. The name has
been changed to reflect the additional functionality.

Station information displays in the GUI have had a repair button added to them. A
faulty station can be fixed by clicking on it, which will remove money from the
player, and simply reset the boolean isFaulty attribute of a station to false.

Faulty stations appear identical on the map whether they are repairable or not- we
did this because, for the most part, players will not be bothered about whether a
station is repairable unless they particularly need to pass through it. When you try to
repair a permanently damaged station, a warning message appears to alert the user
that it can’t be done.

At present, the station’s level is not displayed to the user. We had planned to add
this as a number in the centre of the station’s circle, however, due to time constraints
in this assessment, we have not been able to.

Relevant Testing
See test plan pages 27-31 for black box testing of the fault system.

6 of 10

Goals
Justification of Change
We extended the goals to make the game more varied and enjoyable to the players
as the new goals help to prevent the game from becoming too repetitive. The
added goals also satisfy one of the customer’s requirements that the game must
have both qualitative and quantitative goals.

User.GP.2.1 Players Must be provided with Goals
User.GP.2.3 Game Must support at least 10 different goals
User.GP.2.4 Each goal Must have an associated number of points a player

can score for completing it.
User.GP.2.5 Goals Must be completable
User.GP.2.6 Users Must be able to accept or reject goals
User.GP.7.2 User’s score Must be based on their achievement of goals
User.UI.1 The user’s current goals Must clearly be shown

Architecture Justifications
A lot of the extensions made to the Goal system could be made fairly quickly as a
lot of the pathfinding logic and completion checks were either in place or partially in
place. Extensions to the Goal Factory class were made to allow the generation of
quantifiable goals, and ensure that any goal generated was completable. Using the
implementation of Dijkstra’s algorithm to ensure any time limits were sensible helps
to prevent player frustration at being unable to complete goals. Originally the goal
superclass had a method that tested for goal completion whenever a train passed a
station, this method has been edited so that instead of testing for a start station and
an end station being passed, the method additionally tests for a via station being
passed, the correct cargo was being transported and it ensures that the goal is still
within it’s allocated time limit if it has one. These extra tests are used where
applicable depending on the goal type.

Four new types of goal were introduced, all of which extend the SpecialGoal class.
Cargo Goals which required you to take a specific cargo (currently Diamonds) from
one station to another (your train is slowed down by 10% due to the extra weight of
the cargo). Route Goals require you to take a specific route (i.e Travel from station A
to station B via station C). Timed Goals use Dijkstra's algorithm to calculate an
appropriate time limit for the goal to be completed in. Combo Goals are a
combination of Route and Timed goals (i.e Travel from station A to station B via
station C in X turns). A new method goalFailed has also been added to the Goal
superclass, which displays a message to the user upon failing a goal. All of the new

7 of 10

goal types reward the player with a larger sum of money and more points than the
standard goals due to their extra requirements. These goals were introduced with
the aim of increasing variety in gameplay to keep the game interesting for the
players by encouraging them to try different strategies.

GUI Justifications
The GUI has been changed to display additional information about each of the
special goals on the goal icons, such as the turn limit on a timed goal. This was a
challenge as the way the icons had been written did not lend itself well to being
extended easily. Given more time we would have changed the way the information
is displayed in order to allow the simple addition of more goal information, such as
positioning individual labels or creating a list of labels that could be appended to.

Relevant testing
See test plan pages 4-15 for unit tests of the goal system, and pages 16-20 for black
box testing of the goal system.

8 of 10

Minor changes, overarching challenges and approaches

Minor Changes
Throughout the course of this project, we had to make many minor changes to this
project. Many of these changes were minor bug fixes to ensure that the game
functions correctly and is more usable and intuitive for a new user.

We added a system which gives players money at the start of each turn for each
station they own, which ensures that players do not run out of money if they can’t
complete goals in time, which we considered to be frustrating for the player.

We removed a bug which crashed the game if you clicked the abort button whilst
not having a route in the routing screen. We also removed a bug which continued to
show the routing blips on the GUI after the routing screen had been closed.

We added the ability for the game to detect when it has reached the turn limit and
then display who won, their score, and enable the player to close the game. Which
prevents the players from playing the game forever.

(Func.SYS.11.1) Stations are now purchasable if you have a train on that station, then
the station can be selected and the player is provided with an option to purchase
the station, or upgrade it for a lower fault rate if the station is already owned.

(Func.SYS.11.2)(Func.SYS.11.7) Stations now provide resources of a specified kind and
also gold every turn to the player that owns them.

(Func.SYS.13) System will quit if and only if the turn limit has been reached and the
player has clicked to continue.

Overarching challenges
The project we chose was very large relative to other projects in the assessment,
which meant that understanding the code in the initial stages of this assessment was
a challenge. Due to the advanced nature of the project, and the limited timeframe
we had to extend it, we had no time to restructure the code to our preferences,
instead choosing to adopt the original authors’ design style, which has meant coding
has taken more time and effort, but is overall easier to comprehend.

Throughout the project, we have had problems with the lack of clear boundaries
between classes. We have often found ourselves having to change multiple classes

9 of 10

to achieve a new piece of functionality, because it was unclear which classes were
affected by the change. It has been a challenge adapting to a drastically different
architecture style, and a different coding structure, as we have tried to maintain
these standards for consistency to help with readability and expandability for future
coders.

The GUI, while well made for the purposes of the last assessment, was written in
such a way that extending upon it was difficult and time consuming, which has led
to some initially planned GUI functionality not being added because of time
constraints.

The project was extended using pair programming, as we found that this was a
good way of eradicating bugs and errors, and ensuring it was always clear who was
responsible for which sections of the project. We changed the pairs for this
assessment to ensure that there was an even spread of coding skills across the
pairs. We also continued with a scrum programming methodology.

The project was extended in line with Java standard coding practices, which was
consistent with both the original authors’ style, and also the style we adopted for the
last assessment, which meant that we did not have to change practices.

The testing for the project was done in JUnit to keep consistency with the previous
authors.

Relevant Testing
See test plan page 33-34 for black box testing of the game ending.

Appendix:
The following pages contain a full list of Team HEC’s original requirements for reference.

10 of 10

