

Game GUI and Design Report

Design Aims
Introduction
In our project design, we’ve aimed to create a clean, flat graphical user interface.
This idea behind this is to eliminate any distractions and focus on clear, simple and
immersive gameplay. In theory, clean design reduces the effort you need to put in to
find information. In practice, we think we have achieved this well, as the following
report will explain.

On Splashscreens
The first step for this was to rule out the addition of a splash screen upon opening.
Game splash screens typically only contain two options anyway- start game and
tutorial/instructions. As we are shipping the game with a User Manual, we didn’t see
the need for on-screen instructions, therefore it seemed pointless to add a splash
screen that just contained a ‘Play’ button. Thus, upon opening, our game lets the
user get straight into the gameplay.

Use of Colour
When designing our user interface, we wanted to use colour to make it attractive to
the eye, but in order to keep it clean, and not garish, we kept the range of colours to
a minimum. As such, the final screen, excluding trains, only uses four colours- blue,
green and black for the Europe map backdrop and white for any stations, junctions,
checkpoints or track.

Elimination
We have attempted to eliminate any unnecessary assets that designers are often
tempted to include into interfaces. This includes things such as borders around
buttons, bullet points in lists and lines between items. Adding such items to
interfaces often creates a design that feels cluttered, while often not adding to the
readability of text and also generally not improving the item’s ability to stand out.
Therefore, we have made sure that our buttons are plain-text, with no borders, any
lists- for example, our list of goals- do not feature bullet points, and we have used
space separation rather than dividing lines to distinguish between different parts of
our UI.

Component Design
Map
We decided that as there is a
lot of information that the map
needs to display to the player,
we would create a very
simplistic background image
with a clear and instantly
recognisable image of Europe.
This 2-tone feature keeps the
information clear and the user
well orientated as to where
they are working. In this
Diagram (not for the User) the
junctions are ringed in black,
the cities are white dots and the
checkpoints are ringed in red.
When referring to these later in
this document the GUI used in
the game (lower image) is
referenced.

The idea of a statically
generated map is essential in
our project as the complexity of
the game is based on routing
trains between stations, so a
procedurally generated map
would likely be unbalanced for
such a problem and cause
games to become
un-enjoyable as a “bad” map would create trivial or even impossible problems.

The map remains visible at all times, we intentionally designed the map so that it
can all be read and understood without needing to zoom in or out, therefore it never
moves and all menus will lie translucently over the top. These menus will be
toggleable to keep the screen clear if the player doesn’t want the clutter.

The map is represented as a MapGraph object, which is displayed by the MapGUI
object. The MapGraph object handles all the methods for retrieving, and changing
all the information about the map state.

Stations
We chose the stations as they are mostly capitals of their countries and are
therefore recognisable, each station is represented by a large white circle to ensure
that it is easily seen against the green background, it will turn dark blue if it is
selected. The station’s circle is the largest kind of circle on the map, this implies it’s
importance to the user- stations are clearly more important as they are necessary to
complete goals. Some stations were added that are not capitals purely to ensure
an even spread of cities over the map. Here is a list detailing the cities/stations used.

Capitals:
● London
● Paris
● Berlin
● Madrid
● Moscow
● Oslo
● Warsaw
● Budapest
● Istanbul
● Stockholm
● Rome
● Prague
● Athens
● Lisbon

● Bucharest
● Kiev
● Amsterdam
● Geneva
● Belgrade
● Dublin
● Zagreb
● Riga

Non-Capitals:

● Stuttgart
● Porto
● Lviv

Stations inherit all the properties of junctions, as they require all the same
functionality, with the addition of a name, and the ability to be used in goals. The
distinction is made because while they work in much the same way, the user sees
stations as separate, more important entities.

Junctions
A junction is anywhere where multiple tracks join that isn’t a station or a checkpoint.
We made these larger than checkpoints to show that they are selectable and trains
can be directed to them. They maintain the white circle graphic to keep continuity,
but are slightly smaller. This subtle difference implies to the user that they are less
important than stations.

The Junction class is used as the base for any point of interest on the map, it can be
extended to station, checkpoint, or exist in its own right. Junctions have methods to
check which trains are presently at them and which junctions are connected to
them.

A choice is required at any junction or station

Pathing (Checkpoints)
The small white dots represent checkpoints on the track, each checkpoint uses one
of a train’s movement for that turn and so it is imperative that the players can easily
see where each track goes but also how long it is going to take to travel down any
given one.
Checkpoint is an extension of junction, with additional functionality to allow for faults
in the track. Checkpoints are assigned buttons in MapGUI, but they aren’t valid
selections for a move command as explained in the User manual, which means that
they cannot be interacted with as the game ruleset does not allow for checkpoints
to be set as destinations. (This would be an easy extension if required)

Tracks
Tracks are represented as dashed lines connecting the junctions, checkpoints and
stations, these lines are faithful to the white colour scheme in order to maintain
consistency and make them easy to follow. The representation of junctions and
stations mean that there is never any confusion about when one track crosses
another as is clearly displayed. Trains will never appear on pieces of track that aren’t
some kind of junction, so the routes won’t get obscured. They are displayed through
the GUI purely to maintain the player’s immersion, and add clarity to the connections
between each junction.

Trains
Each train is represented by a different coloured shield image. If a train has been
selected by the player then the current selected train will be highlighted by a black
line around the outside of the shield.The train level is represented by a
number in the middle of the shield, for instance: a level 2 diesel train that the
player has selected will be represented as:

At the end of a turn the location of each train will be updated if the player has made
a successful move through adjacent junctions. The colour scheme for each train
type is documented below.

- Electric (selected)

- Electric

- Diesel (selected)

- Diesel

- Flying (selected)

- Flying

Goals
Displayed in the top left of the screen, goals are contained within an otherwise
unused section of the UI, as a result they can be constantly displayed without
obfuscating the map. Each goal is displayed as a string for the player to see and
achieve. Goals are replenished as they are completed in order to always have 3
goals active at any point in the game (one of our requirements), this means that the
section can maintain a static shape and position.The shop window would between
the goal section and the player’s info.
Goals are represented by Goal objects, which can be extended to specific goal
types, enabling different kinds of goals to
be developed quickly and easily.
The goals are managed by a GoalEngine
object, which creates goals when they are
needed, and destroys them when they
have been completed.

Player Info
This section sits at the bottom left corner of the window like the goals section, this is
a static field filled with the score and wealth of the current player. Translucent, but
not toggleable this window will be small enough not to be intrusive on the rest of
the UI. In the player info section we have also placed the move-train, end turn, and
quit buttons to keep actions and information in the same place and reduce screen
clutter.

Summary
Simplicity is the main push of this UI design, with bright colours and only one screen
we hope to have managed to keep the game simple to use and pretty to look at.

